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Aspects of the Two-Layer Model for Direct Contact
Condensation of Steam on Wavy Falling Films

M. KOSTOGLOU and T. D. KARAPANTSIOS

Department of Chemical Technology, School of Chemistry, Aristotle University, Thessaloniki, Greece

Detailed physical modeling of the direct contact heat transfer process of steam condensing on a falling liquid film is a very difficult
task due to the complex hydrodynamics of the film. The present state of the art is restricted to film Reynolds number of the order of
100. On the other hand, empirical relations cannot offer any insight into the mechanism and features of heat transfer in liquid film.
Phenomenological models are needed to bridge the gap between empirical relations and direct physical simulations. One of these
models is the so-called two-layer model, which divides the falling film into a laminar conduction-dominated (substrate) layer
flowing over the solid wall and a completely mixed layer representing the waves. This model is further developed here by focusing
specifically on two aspects. First, the influence of temperature-dependent physical properties of the liquid on the structure and heat
transfer characteristics of the substrate layer is studied, and typical results are presented in the absence of waves. Second, the
relation of the main parameter of the model (i.e., thickness of the substrate layer) to local film state is discussed in detail.
Generalized constitutive laws and an approach based on utilization of the experimental film thickness time series are proposed
and discussed. The proposed procedures can be integrated to a generalized two-layer model for direct contact condensation.

Keywords: Direct contact condensation; Falling films; Interfacial waves; Two-layer model

Introduction

Transport processes in a falling liquid film constitute a very
interesting problem, with several applications in chemical
engineering. Most known applications are related to gas
absorption by falling films (mass transfer in the film) (Killion
and Garimella, 2001) and either direct contact condensation
to or evaporation from falling films (heat transfer in the film)
(Kreith and Boehm, 1988). Direct contact condensation of
vapor on water falling films is of particular importance in
regard to nuclear reactor safety (de la Rosa et al., 2009). It
is noted that although many studies consider the two prob-
lems of mass and heat transfer as equivalent and extrapolate
the results of one to the other, actually this is not the case.
The mass transfer problem refers to the transport of a pass-
ive scalar in the film since the gas concentration is so low
that it has no influence on liquid properties. On the contrary,
during the heat transfer process the local temperature of
the liquid changes and this, in turn, changes the physical
properties of the liquid. In particular, the viscosity of water
is very sensitive to temperature, resulting in a two-way coup-
ling between heat transfer and film hydrodynamics. The
focus of the present work is on vapor condensation on water
falling films, but the proposed modeling framework can also
be used for the mass transfer problem.

Modeling the condensation of vapor from air=vapor
mixtures on flowing liquid films (direct contact heat transfer)
is a very difficult problem and has been the target of exten-
sive research. Detailed understanding of film structure and
the corresponding transport processes is of paramount
importance for overall condensation efficiency. Several
approaches to tackling this particular problem can be found
in the literature. The first of these is the derivation of empiri-
cal correlations for the overall condensation rate (e.g., for
condensation in horizontal tubes: El Hajal et al., 2005;
Thome et al., 2003; for gas absorption from falling
films: Henstock and Hanratty, 1979; Won and Mills, 1982;
Yoshimura et al., 1996). Better understanding of the process
requires modeling of the evolution of condensation rate
along the flow. In the case of the presence of non-
condensables in the gas phase, modeling is separated into
two parts: modeling of heat transfer in the flowing liquid
and modeling of heat and mass transfer in the gas phase.
The two problems are related through the appropriate inter-
facial conditions. Both problems would previously have
been analyzed in terms of standard techniques from bound-
ary layer approximation to the use of computational
fluid dynamics codes for solving complete Navier–Stokes
equations (or the corresponding Reynolds-averaged Navier–
Stokes equations in the case of turbulent flow) if there had
not been a major obstacle in the analysis (i.e., the transient
wavy interface of the film). In the case of laminar flow of
the film, several attempts have been made to solve the trans-
port equations in both film and gas using a prescribed shape
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of the gas–liquid interface (Yang and Jou, 1993) based on
either experimental observations (Jayanti and Hewitt,
1997a, b) or theoretical analysis of the fluid dynamics prob-
lem (Sisoev et al., 2005; Bontozoglou, 1998). The success of
this approach is limited since it cannot reveal the complete
picture but only indicative results of qualitative significance.
The chaotic transient structure of the wavy interface cannot
be approximated in general by a few specific patterns. Recent
attempts based on the exact solution of the fluid dynamics
problem using the volume of fluid approach are restricted
to relatively low Reynolds numbers (<500) (Kunugi and
Kino, 2005; Kunugi et al., 2005; Dietze et al., 2008).

The situation is more complicated in the case of higher
liquid flow rates for which the flow in the field is turbulent.
In this case, there are no theories for reproduction of the
evolution of the interface so only the prescribed wave shape
approach in conjunction with a k-e turbulent model can be
employed (Jayanti and Hewitt, 1997a, b; Ye et al., 2002).
A more usual approach is to assume a film of uniform thick-
ness incorporating the influence of waves in the transport
properties of the two phases, liquid and gas (Revankar and
Pollock, 2005). Regarding the liquid phase, there are several
models available for turbulent transport properties distri-
bution in a falling film (Mudawar and El-Masri, 1986; Ueda
et al., 1977). The major disadvantage of these models is that
they predict a radical reduction of turbulent mixing at the
imaginary surface of the film, posing a significant barrier
to heat transfer. Regarding the gas phase, it is well known
experimentally that a wavy interface increases the effective
transfer coefficients (de la Rosa et al., 2009). This may be
due to the combined effect of roughness and transverse
velocity flow field imposed on the gas by wave motion.

A different modeling approach to the above condensation
process was proposed by Karapantsios et al. (1995). Based
on simulation results for flow field, it was found that recircu-
lation patterns exist within the waves. This implies that con-
vective currents transfer fast heat to the inner layers of the
film (which is completely different from the interface mixing
reduction proposed by turbulent models). Based on this
observation and considering the low reliability of turbulent
models, the following film model is proposed: The film con-
sists of two regions – (i) the wave region where recirculation
patterns ensure the transverse homogeneity of transported
quantities and (ii) the laminar substrate region in which
recirculation patterns have no influence and transverse
transport occurs solely by conduction. The above model is
henceforth termed the two-layer model. The substrate layer
thickness used by Karapantsios et al. (1995) was assumed
uniform along the flow and equal to the minimum measured
film thickness. The relaxation of these two assumptions is
the main objective of the present work, allowing the develop-
ment of a generalized two-layer model for the direct contact
condensation process.

The two-layer model will be examined here for the case of
a planar falling film of cold water exposed to an infinite
domain containing stagnant pure vapor. This choice was
made in order to reduce the complexity of the problem
and to restrict it to liquid phase transport. In particular,

some specific aspects of the two-layer approach are exam-
ined. The first of these concerns the effect of viscosity vari-
ation, due to its temperature dependence on the efficiency
of condensation along a laminar falling film (or a laminar
substrate layer). The second concerns the significance of
the constitutive law for the thickness of the substrate layer
on the results of the two-layer model. Finally, a framework
is proposed for the derivation of the above constitutive law
based on experimental time traces of film thickness.

Main Part

General

A practical question for falling film condensation is at what
flow length is condensation complete: when all vapor is con-
densed. A water film is assumed falling over a vertical plate
under fully developed flow entering a vapor chamber. This
chamber is supposed to surround the vertical plate entirely,
with a width many times the thickness of the flowing film
such that the vapor distant to the film surface can be con-
sidered effectively stagnant and, in addition, the vapor press-
ure remains constant (not affected by vapor removal as
condensate). The inlet mass flow rate of water per wetted
width of the solid plate is Go, the entrance temperature of
water is To, and the temperature of vapor is Ts (only the
value Ts¼ 100�C, implying normal ambient pressure, will
be considered here). The inlet water temperature, To is
usually equal to ambient temperature and so lies between
10 and 30�C. The vertical plate is assumed to be externally
insulated and is made of an insulating material. As feed
water falls down the plate, vapor condenses on the film
increasing its temperature until it reaches Ts. At this point,
condensation stops since there no driving force (temperature
difference) remains. It can be assumed that in the tempera-
ture range of interest (To–Ts) the density, q and specific heat
capacity, cp of water are practically constant. From a very
simple integral energy balance of the process one can deter-
mine that the maximum flow rate of the condensate is
Gcond¼ cp(Ts�To)Go=DH (DH is the latent heat of conden-
sation). This means that the maximum condensation

efficiency (condensed vapor=used water) is Gcond

Go
¼ cpðTs�ToÞ

DH .

So the efficiency of the process is generally poor (about
14%) and is easily computed. What flow length is needed
in order to achieve the maximum efficiency calculated
above?

The case of a laminar film with one-dimensional flow (the
effect of waves is ignored) is first studied. This problem will
help on the one hand to extract the length scales of the
phenomena occurring and, on the other, to focus on the
problem of viscosity variation with temperature (which is
usually ignored). In the case of constant properties (viscosity
l and thermal conductivity k), film thickness d and velocity
profile u(y) are derived from well-known equations (Faghri
and Zhang, 2006):

d ¼ 3lGo

q2g

� �1=3

ð1Þ
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uðyÞ ¼ qg

l
dy� y2

2

� �
ð2Þ

The heat conservation equation in the film can be written
in this case as

uðyÞ @T

@x
¼ a

@2T

@y2
ð3Þ

where a¼ k=qcp is the thermal diffusivity of water.
Using Equations (1) and (2), it can be shown that with the

following nondimensionalization g¼ y=d, ts¼ xla=(qgd4),

and �TT ¼ (T–Ts)=(To–Ts), Equation (3) takes the form

g� g2

2

� �
@�TT

@ts
¼ @

2 �TT

@g2
ð4Þ

which must be solved with initial=boundary conditions
�TT ¼ 1 at ts¼ 0, �TT ¼ 0 at g¼ 1, and @ �TT

@g ¼ 0 at g¼ 0. It is evi-

dent that the mathematical problem defined by Equation (4)
with its boundary conditions does not depend on any para-
meter of the physical problem (i.e., it admits a ‘‘universal’’
solution). The physical problem involves the length scaling
according to which length needed for temperature equili-
bration (i.e., for completion of condensation) is proportional

to length ð3GoÞ4=3l1=3

g1=3q5=3a
. The proportionality constant can be

found from the solution of Equation (4). Condensation
length increases as the mass flow rate of water increases,
and also increases as viscosity increases despite the conse-
quent film thickening according to Equation (1). Reduction
in heat transfer due to film thickening is counterbalanced by
decrease in velocity and increase in contact time as viscosity
increases. Finally, increase in contact time predominates
over the influence of film thickening. Whereas increase in a
from 20 to 100�C is about 15% and it may be ignored, the
respective decrease in l is 72% leading to a characteristic
length lower by 33% as temperature changes from To to Ts.

Effect of Temperature Dependence on Viscosity

The above analysis showed that variation in viscosity
variation with temperature is so large that it affects both
the heat transfer process and the structure of the film (con-
siderable thinning occurs along the flow as temperature
increases and viscosity decreases). To make things even
more complex, viscosity exhibits not only an axial but also
a transverse profile due to the transverse velocity profile.
This means that the velocity profile in Equation (2) derived
for constant viscosity does not hold. A more detailed model
incorporating both the temperature dependence of l and a
and increase in water flow rate due to condensation is next
formulated. The x-momentum conservation equation is
written as

@

@y
l
@u

@y
¼ �qg ð5Þ

The viscosity is written as l(T)¼ loM(T) where lo¼ l(To)
[i.e., M(T) is simply the normalized viscosity]. Equation (5)
is solved using the no-slip boundary condition on the wall
and the zero shear stress condition at the gas–liquid interface
y¼ d, resulting in

uðyÞ ¼ qg

lo

Zy

0

d� z

MðTÞdz ð6Þ

The symbol z is used in the present work only as dummy
variable for integrations.

Mass flow rate is given by integrating the velocity profile
and interchanging the order of the double integral:

G ¼ q
Zd

0

uðzÞdz ¼ q2g

lo

Zd

0

ðd� yÞ2

MðTÞ dy ð7Þ

The above equation locally relates film thickness, mass flow
rate, and the temperature profile. The heat transfer equation
takes the form (transverse convection can be ignored for the
thin films considered)

@uðyÞT
@x

¼ @

@y
aðTÞ @T

@y
ð8Þ

The boundary conditions are similar to those of Equation
(3), but now d has no constant value and evolves along the
flow. Thermal equilibrium at the gas–liquid interface

suggests that _mmDH ¼ �kðTsÞ @T
@y

� �
y¼d

where _mm is condensate

flux at the film surface. Using this condition it can be shown
that local mass flow rate, which is the sum of the initial and
condensate flow rates, is given as

G ¼ Go þ
kðTsÞ
DH

Zx

0

@T

@y

� �
y¼d

dz ð9Þ

Inlet film thickness, do is related to inlet mass flow rate
through

do ¼
3loGo

q2g

� �1=3

ð10Þ

In order to render the problem in a more conceivable
form, the following nondimensionalization is introduced:

�xx ¼ x

L
�yy ¼ y

do

�dd ¼ d
do

�uu ¼ u

uo
AðTÞ ¼ aðTÞ

ao
ð11Þ

where a o¼ a (so) and uo ¼ qgd2
o

lo
. L is an arbitrary length used

to render x dimensionless. The scale value relevant to the
practical problem, L¼ 1 m is used here.

The nondimensional problem (the temperature is left in
its dimensional form) is

C1
@�uuð�yyÞT
@�xx

¼ @

@�yy
AðTÞ @T

@�yy
ð12Þ

Two-Layer Model for Direct Contact Condensation 1537
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with �uuð�yyÞ ¼
Z�yy

0

�dd� z

MðTÞ dz ð13Þ

The initial=boundary conditions are

Tð0; �yyÞ ¼ To; Tð�xx; �ddÞ ¼ Ts;
@T

@�yy

� �
�yy¼0

¼ 0 ð14Þ

The local value of film thickness must fulfill the following
equation:

�dd ¼ 3

Z�dd

0

ð�dd� �yyÞ2

MðTÞ d�yy

0
B@

1
CA
�1=3

ð1þ C2

Z�xx

0

@T

@�yy

� �
�yy¼�dd

dzÞ1=3 ð15Þ

where

C1 ¼
uod

2
o

aoL
ð16aÞ

C2 ¼
kðTsÞL

DHGodo
ð16bÞ

In the above equation, C1 defines the length scale for con-
densation and C2 denotes the contribution of the condensate
to film thickness.

The system of Equations (12)–(14) constitutes a free
boundary problem and its numerical solution is not straight-
forward. First, the boundary immobilization technique is
used to transform the mathematical problem to a fixed
boundary one. The new pair of independent variables,

t ¼ �xx; g ¼ �yy=�dd is considered. By using the following chain
differentiation rule:

@Kðx; yÞ
@x

¼ @Kðt; gÞ
@t

þ @K
@g

dg
dt

ð17Þ

Equation (12) after some algebra is transformed into

@T

@t
¼ 1

C1�uuðgÞ�dd2

@

@g
AðTÞ @T

@g
þ g

�dd

d�dd
dt

@ �uTuT

@g
� T

�uuðgÞ
@�uu

@t
ð18Þ

The boundary conditions now are defined according to g¼ 0
and g¼ 1. The equation for dimensionless thickness takes
the form

�dd2 ¼ 3

Z1

0

ð1� gÞ2

MðTÞ dg

0
@

1
A
�1=3

ð1þ C2
1
�dd

Z t

0

@T

@g

� �
g¼1

dzÞ1=3

ð19Þ

The new velocity can be written as �uuðgÞ ¼ �dd2
R g

0
1�z

MðTÞ dz.

The boundary immobilization procedure simplified the
structure of the problem at the cost of adding complexity
to the main partial differential Equation (18). The first term

on the right-hand side is the usual conduction term, while
the second term is a convection term induced by change in
the coordinates system. The third term is due to velocity
variation along the flow. At first glance, the second term
might be omitted since the slope of the thickness is very
small, but a more precise analysis shows that this is not
the case since variation in thickness occurs at the same
length scale with temperature evolution. Computational
results show that the convection term has a contribution
of a few percent (at most) to the solution.

The general structure of the problem is not usual, so a
specialized numerical approach is used for its solution. The
conduction term renders the problem very stiff, and there-
fore a stiff integrator must be used for its solution. The
second and third terms on the right-hand side have a form
incompatible with standard integrators so a specific
approach is followed. The partial differential Equation
(18) is discretized in the g direction using the finite difference
technique. An additional ordinary differential equation is
added to solve for the integral in Equation (19). Equation
(19) is solved iteratively at each time step until convergence.
The implicit Runge–Kutta integrator with adjustable time
step (STIFF3; Villadsen and Michelsen, 1978) is used for
the integration of the system of Ordinary Differential Equa-
tions (ODEs). The time derivatives appearing on the
right-hand side of the system of ODEs – derived from the
second and third terms on the right-hand side of Equation
(18) – are handled in a special way. With each attempt of
the integrator to find a new step, these terms are computed
using a first-order time finite-difference approach based on
the current values of the unknown quantities and the values
at the previous successive step of the integrator.

Indicative Results and Discussion

Indicative results are presented next to clarify the effect of
viscosity variation on falling film heat transfer. In all cases,
To¼ 20�C (a typical ambient water temperature) and
Ts¼ 100�C (condensation temperature at atmospheric press-
ure). The evolution of film thickness along the flow for
Go¼ 0.05 kg=m=s is shown in Figure 1. If the viscosity is
assumed constant for its inlet value, then film thickness will
increase along the flow due to condensation. Since the
efficiency of condensation for steam condensation at 1 atm
is about 14% and the thickness scales with mass flow to
1=3 power, it can be estimated that the increase in film thick-
ness is about 5%. This is the scenario presented in Figure 1.
The situation is completely different in the case of
temperature-dependent viscosity, where film thickness
decreases along the flow due to decrease in viscosity induced
by temperature rise. This decrease cannot be counterba-
lanced by the small increase resulting from condensation,
so decrease finally predominates in film thickness evolution.

Decrease in film thickness along the flow accelerates the
heat transfer process leading to faster (i.e., requiring a smal-
ler flow length) condensation. The degree of acceleration of
heat transfer due to film thinning can be assessed by compar-
ing the wall temperature (Tw) evolution along the flow
between the cases of constant and temperature-dependent
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viscosity (Figure 1). Despite the two curves arising together,
at some point the temperature in the variable viscosity case
increases more rapidly due to heat transfer enhancement
induced by film thinning. The increase in heat transfer
(and correspondingly, condensation) efficiency is not as dra-
matic as would be expected by the fourfold viscosity
reduction (according to water property tables), and this is
partly because heat transfer rate increases when the driving
force (temperature difference) is already low.

Having clarified the importance of variable viscosity to
overall condensation rate, the effect of mass flow rate of
the liquid film is next examined. The evolution of wall tem-
perature for four values of mass flow rate (Go¼ 0.05, 0.1,
0.15, and 0.2 kg=m=s) is shown in Figure 2. As expected,
greater flow length is needed to complete condensation as
water flow rate increases (leading also to increased conden-
sate flow rate). The scaling of the required length to flow
rate, G is close to the value of 4=3 previously estimated
theoretically.

The evolution of film thickness for the four considered
flow rates is presented in Figure 3. There is an initial region
of rapid linear decrease in film thickness followed by a
period of slow exponential decrease to an asymptotic value
that corresponds to the thickness for viscosity value at
temperature Ts.

It is of interest to examine the temperature and velocity
profiles at several locations along the flow for some of the
cases presented in previous Figures. The limiting cases of
flow rates (Go¼ 0.05 and Go¼ 0.2 kg=m=s) are selected.
The temperature profiles in the film for the large flow rate
(Go¼ 0.2 kg=m=s) at four locations along the flow are shown
in Figure 4. There is a region close to the wall where the
temperature profile is flat, with a value that increases along

the flow; and there is a second region with a linear profile
connecting the wall region of the (approximately) uniform
temperature to the surface temperature, Ts. The correspond-
ing velocity profiles are shown in Figure 5. The area between
the curves and the vertical axis corresponds to the local flow

Fig. 2. Evolution of wall temperature along the flow for sev-
eral values of mass flow rate Go: curve 1, Go¼ 0.05 kg=m=s;
curve 2, Go¼ 0.1 kg=m=s; curve 3, Go¼ 0.15 kg=m=s; curve 4,
Go¼ 0.2 kg=m=s.

Fig. 3. Evolution of film thickness along the flow for several
values of mass flow rate Go: curve 1, Go¼ 0.05 kg=m=s; curve
2, Go¼ 0.1 kg=m=s; curve 3, Go¼ 0.15 kg=m=s; curve 4,
Go¼ 0.2 kg=m=s.

Fig. 1. Evolution of wall temperature and film thickness along
the flow (Go¼ 0.05 kg=m=s) for the cases of constant (solid
lines) and temperature-dependent (dashed lines) viscosity.

Two-Layer Model for Direct Contact Condensation 1539
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rate of the film. These areas increase for the curves in
Figure 5 as x increases, due to the amount of condensate
added to the film. According to Figure 4, as x increases
the temperature variation across the film decreases and the
velocity profiles approach that corresponding to uniform
temperature (i.e., proportional to g � g2=2). As x decreases
the velocity profile diverges from that of the uniform
temperature, except at very small values of x where the

temperature profile is again uniform and the velocity profile
is that for the uniform temperature. It is noted that although
the velocity profile for the lower x value in Figure 5 is
considerably different from the uniform temperature velo-
city profile, it can be perfectly fitted by a second-order poly-
nomial curve. The temperature and velocity profiles for the
higher (Go¼ 0.2 kg=m=s) flow rate case are shown in
Figures 6 and 7, respectively. There is a qualitative similarity

Fig. 4. Temperature profiles in the film at several locations along
the flow (Go¼ 0.05 kg=m=s).

Fig. 5. Velocity profiles in the film at several locations along the
flow (Go¼ 0.05 kg=m=s).

Fig. 6. Temperature profiles in the film at several locations along
the flow (Go¼ 0.2 kg=m=s).

Fig. 7. Velocity profiles in the film at several locations along the
flow (Go¼ 0.2 kg=m=s).
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between the low and high flow rates considered. However,
the length scale for condensation completion differs between
the two cases.

The Two-Layer Model

The two-layer model proposed by Karapantsios et al. (1995)
is an alternative to the modified turbulent heat diffusivity
expression, utilized for consideration of heat transfer
enhancement induced by waves. The theory is that the film
can split into two regions: The upper wave region is
completely mixed so heat transfer occurs mainly through
convection from the wave-induced flow field (see Figure 8).
The region close to wall (substrate) exhibits laminar
unidirectional flow and transverse heat transfer occurs via
conduction.

In the two-layer model, the key parameter is the thick-
ness, ds of the substrate film. In the case of uniform tempera-
ture this thickness can be assumed to be a function of
Reynolds number; according to Karapantsios et al. (1995),
it is assumed to take a constant value for all Reynolds
numbers. The problem here is that as the temperature of
the film increases due to condensation, time-averaged film
thickness dave decreases along the flow so ds must also
decrease in order to avoid having ds> dave. Thus the general-
ized constitutive law for ds would take the form ds¼F(Re, l)
where viscosity is computed at the local cross section average
temperature. Reynolds number refers to the inlet condition
(i.e., for l¼ lo). Viscosity is computed at the substrate-
averaged (cup-mixing) temperature, Tave. The degree of
freedom is reduced by using the following decomposition
to uncorrelated Re and viscosity dependence:

ds ¼ F1 Reð ÞF2ðlÞ ð20Þ

Having established a constitutive law for thickness ds, the
heat transfer problem is formulated as

@uðyÞT
@x

¼ @

@y
aðTÞ @T

@y
for 0 � y � ds ð21Þ

with boundary conditions T(x,ds)¼Ts and @T
@y

� �
y¼0

and the

velocity profile given by Equation (6) with ds substituted
for d. The mass flow rate of the substrate region is computed
from the relation

Gs ¼
q2gd3

s

lo

Z1

0

ð1� y2Þ
MðTÞ dy ð22Þ

The wave layer is assumed to be in thermal equilibrium at
the saturation temperature Ts, so the latent heat of the
condensate should be equal to the heat transferred from
the wave layer to the substrate layer, resulting in

GcondðxÞ ¼ �
kðTsÞ
DH

Zx

0

@T

@y

� �
y¼ds

dz ð23Þ

The mass flow rate of the wave layer at each position along
the flow is derived from the following mass balance:

Gw ¼ Go þGcond �Gs ð24Þ

The mathematical problem is closed (closure is achieved)
using the constitutive law in Equation (20).

One shortcoming of the above model is that it assumes
an instantaneous rise in the temperature of the wave region
from To to Ts. To overcome this problem, finite (incom-
plete) mixing must be considered in the wave layer, which
can be expressed as a heat transfer coefficient increasing
the phenomenological parameters of the problem and
adding a new equation for the wave layer temperature. In
practice, condensation occurs not from pure vapor but
from its mixing with a non-condensable gas (e.g., air). In
that case, gas phase resistance is much higher than the
effect of incomplete mixing so the wave layer can be
assumed to be completely mixed and its temperature is
dictated by gas phase heat and mass transfer. Overall, the
two layers (wave and substrate) can be assumed as two heat
tanks of differing capacity and thermal dynamics. The
effect of substrate layer in the case of insulated external
walls is delay (compared with the completely mixed film)
in the condensation process, especially in the final stages.
On the other hand, the two-layer model predicts faster
condensation than the laminar flow model, which ignores
the mixing effect of waves.

In order to present some results and to demonstrate the
significance of various parameters, the simplest form of the
constitutive law for ds is introduced (the value dso corre-
sponds to inlet conditions):

ds ¼ dso
lðTaveÞ

lo

� �a

ð25Þ

In other words, ds is not dependent on Re (compatible
with the suggestion by Karapantsios et al., 1995) and has
a power law dependence on viscosity. Exponent a is lower
than 1=3 since the dependence of average film thickness

Fig. 8. A schematic of the two-layer approach for condensation
of vapor on falling film.
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on the viscosity is of 1=3 power and sets the upper limit for
the exponent in Equation (25). Equation (21) is solved
using the same procedure as in Equation (12) so it is not
repeated here. The only difference is that the thickness of
the computation domain is computed from the constitutive
law in Equation (25) rather than from the condition in
Equation (15).

Evolution along the flow of the axial velocity-weighted
average (cup-mixing) temperature of the substrate region
(Tave), for several typical values of initial thickness dso

(defined by Go and lo) and a¼ 1=4, is shown in Figure 9.
Heat transfer rate is a very strong function of dso and
increases as the latter decreases. This occurs because not
only the thickness, but also the mass flow rate of the sub-
strate layer, decreases as dso decreases. The influence of the
exponent a in the constitutive law on the evolution of sub-
strate layer average temperature is shown in Figure 10 for
dso¼ 0.3 mm. Heat transfer rate increases and the conden-
sation is completed more rapidly as exponent a increases,
due to the faster thinning of the substrate layer according
to Equation (25). From the above it is evident that the
constitutive law dominates the heat transfer characteristics
of the substrate layer.

An Approach for the Estimation of Substrate Layer
Thickness from Film Thickness Experimental Data

In a previous work (Karapantsios et al., 1995) it was
proposed that the minimum thickness of an experimental
film thickness trace is a good candidate for substrate
thickness. This minimum thickness shows a high degree
of scattering from trace to trace, following rather the

statistics of rare events than regular statistics. An alter-
native method for substrate thickness estimation, taking
into account the whole film thickness trace, must be
developed. An example of such a theory and its appli-
cation in the case of laminar films at a particular tem-
perature, for which experimental information exists, is
presented here.

In principle, computation of the velocity profile in a fall-
ing film requires solution of the complete Navier–Stokes
equations or of some modified version thereof. Neverthe-
less, a rough estimation of velocity profiles at a fixed point
in time can be made if the time trace of the local film thick-
ness h(t) is known. The axial and transverse velocity of the
liquid in the film (u and v, respectively) must obey the
continuity equation:

@u

@x
þ @v

@y
¼ 0 ð26Þ

Since flow is laminar and viscosity is uniform, the small
slope of film thickness can be invoked to apply the lubri-
cation approximation which leads to the following quasi-
parabolic velocity profile:

uðx; y; trÞ ¼ 3uaveðx; trÞ
y

d
� 1

2

y

d

� �2
� �

ð27Þ

where uave is the average velocity at position x. It will be
noted that this approximation is the leading-order
expansion of the so-called long wave approximation
theory, typically used in the study of falling films
(Chang et al., 1996). Integrating Equation (26) with

Fig. 9. Evolution of average film substrate temperature for sev-
eral values of initial thickness, dso: curve 1, dso¼ 0.2 mm; curve
2, dso¼ 0.25 mm; curve 3, dso¼ 0.3 mm; curve 4, dso¼ 0.35 mm.

Fig. 10. Evolution of average film substrate temperature for
several values of exponent a in the constitutive law for ds.
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respect to y and substituting Equation (27) leads, after
some algebra, to

v ¼ �
Zy

0

@u

@x
dy ¼ �3

@uave

@x
d

1

2

y

d

� �2

� 1

6

y

d

� �3
� ��

� @d
@x

uave
1

2

y

d

� �2

� 1

3

y

d

� �3
� �� ð28Þ

Waves move with a celerity U, which is an experimentally
measured quantity. This means that the spatial and temporal
derivatives of film thickness and average velocity at a specific
location are related by

@d
@tr
þU

@d
@x
¼ 0 ð29Þ

@uave

@tr
þU

@uave

@x
¼ 0 ð30Þ

The following local mass balance (accumulation of liquid
must be compensated by increase in film thickness) must be
valid at each x value:

@d
@tr
þ @uaved

@x
¼ 0 ð31Þ

Combining Equations (29) and (31) results in

@uave

@x
¼ 1

d
ðU� uaveÞ

@d
@x

ð32Þ

Substituting Equations (32) and (29) into Equation (28)
gives the following profile for v:

v ¼ �3
1

U

@d
@tr
ðU� uaveÞ

1

2

y

d

� �2

� 1

6

y

d

� �3
� ��

�uave
1

2

y

d

� �2

� 1

3

y

d

� �3
� �� ð33Þ

The only unknown in the above equation is the average
velocity, uave, which can be computed by combining and
integrating Equations (29)–(31):

ðU� uaveÞd ¼ Udave �
G

q

� �
) uave ¼ U�Udave �G=q

d

ð34Þ

The derivation of Equation (34) is not straightforward and
its validity is proved in the Appendix.

By employing the experimental film thickness trace it is
possible to estimate evolution of the transverse velocity pro-
file at each particular location along the trace. For fully
developed flow the velocity profiles must be statistically alike
at every location. This transverse velocity in the presence of
waves is very important because it is responsible for both
mixing of liquid in the film and transferring heat through
a convection mechanism instead of conduction, which is

the predominant transfer mechanism in the absence of
waves.

In general, transverse velocity oscillates with time (along
each wave), changing direction from toward the wall to
toward the film surface. As an approximation, only the velo-
city toward the wall is important in regard to heat transfer
(i.e., negative value of v). Therefore, in order to derive a
characteristic velocity profile for transverse heat transfer,
the following time-averaged velocity is defined (still a func-
tion of distance y from the wall):

VðyÞ ¼ �

RP
0

vðy; trÞHð�vðy; trÞÞHðdðtrÞ � yÞdtr

RP
0

HðdðtrÞ � yÞdtr

ð35Þ

The function H takes the value 1 when its argument is posi-
tive or 0 when it is negative. The equation above denotes
that the averaging procedure holds only when film thickness
exceeds y. The minus sign is used to render V positive. The
value P in the integral is a time period sufficiently long for
all the fluctuations to be absorbed and for convergence to
a time-independent result.

Having defined a characteristic velocity toward the wall,
the heat transfer problem can be considered as convection–
conduction with convection decreasing close to the wall. In
this context, a substrate with thickness ds close to wall can
be assumed in which conduction predominates. A Peclet
number of this substrate can be defined based on its spatial
average transverse velocity:

PeðdsÞ ¼
Vaveds

a
¼

Rds

0

VðyÞdy

a
ð36Þ

As ds increases so does the Pe number computed from
the above equation. For low Pe values, heat transfer in
the film is conduction dominated. Although the transition
from a conduction- to convection-dominated regime is
smooth it can be approximated by a critical Pe number
for transition (a typical choice for Pecr is between 1 and
3). The suggested value for ds is the one that gives
Pe(ds)¼Pecr. In this way, a theory is developed to estimate
ds based on experimental time series of film thickness and
measured wave celerity.

The above approach is applied in the case of falling
water films at 20�C for three Reynolds numbers
(Re¼ 830, 1160, and 1810) for which experimental data
for h(t) and U exist (Kostoglou et al., 2010). Some instan-
taneous velocity v profiles for Re¼ 1810 are shown in
Figure 11. Velocity v is negative when its direction is
toward the wall and positive in the opposite case. The pro-
files refer to different points in the time trace. The instan-
taneous film thickness at each instant corresponds to the
highest value of y at each profile. Evidently, there is a var-
iety of profiles with very different velocities. The symbol #
corresponds to an instant of minimum thickness at which
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velocity is almost zero. The point here is that the average
velocity may be sufficiently low to transfer heat for thick-
nesses larger than dmin, so it is not necessary that dmin

and ds coincide.
The velocity profiles V(y) for the three Reynolds given

reach y¼ 1 mm and are shown in Figure 12. Fluctuation

(noise) for lower Re number at high y values is due to the
small portion of film thickness reaching this y value. It is
apparent that velocity increases as Re increases. The corre-
sponding profiles of the conduction substrate Pe number
versus the thickness of the substrate are shown in
Figure 13. It is interesting to observe that for the same thick-
ness, Pe increases with Re due to increase in the wave effect.
By assuming Pcr¼ 2 and using the profiles in Figure 13, the
estimated values of ds are 0.328 mm (Re¼ 830), 0.32 mm
(Re¼ 1160), and 0.315 mm (Re¼ 1810). An initial obser-
vation is that the estimated values of ds are much higher than
the experimental values of dmin (�0.2 mm) which is reason-
able, as already explained. The second observation is that
there is a (very slight) decrease in ds with Re whereas dmin

increases (Karapantsios et al., 1995; Kostoglou et al.,
2010). This decrease in ds is due to the increase in wave
power with mixing as Re increases.

The above approach can, in principle, be extended to the
case of turbulent films using expressions for turbulent vis-
cosity and turbulent thermal diffusivity, and by performing
considerably more difficult computations. In order to be
able to derive the constitutive law for ds using this approach,
experimental data for h(t) are needed for other temperatures
between 20 and 100�C.

Conclusions

In the present work we explored aspects of the two-layer
model for the simulation of direct contact vapor conden-
sation on falling films. In particular, the influence of the
temperature dependence of liquid viscosity on velocity

Fig. 13. Estimated Peclet number as a function of substrate
thickness, ds for three values of film Reynolds number (Re).

Fig. 12. ‘‘Towards the wall’’ time-averaged velocity profile for
three values of film Reynolds number (Re).

Fig. 11. Estimated snapshots of the transverse velocity profile
v(y) based on experimental film thickness time series. # denotes
minimum film thickness.
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profile in laminar falling film and, consequently, on the
condensation process is examined. The significance of the
constitutive law for substrate layer thickness is indicated
and some simple forms for this law are presented and
discussed. In addition, an approach is proposed for the
derivation of this constitutive law based exclusively on film
thickness experimental data. The analysis performed in
this paper and the corresponding results constitute a major
step toward the integration of the two-layer model for
modeling the falling film direct contact condensation
process.

Nomenclature
C1, C2 dimensionless parameters defined in Equations

(16a) and (16b)
cp water-specific heat capacity, J=kg=K
g gravitational acceleration, m=s2

Gcond condensate flow rate, kg=m=s
Go inlet flow rate, kg=m=s
Gs substrate layer flow rate, kg=m=s
k water thermal conductivity, J=s=m=K
L characteristic length used only for nondimensio-

nalization, m
_mm condensate flux, kg=m2=s
M normalized viscosity, l(s)=lo

t normalized distance defined as x=L
T water temperature, K
To inlet water temperature, K
tr time, s
ts normalized distance along the flow, xla=(qgd4)
Ts condensation temperature, K
u velocity component along the wall, m=s
U wave celerity, m=s
V time-averaged velocity toward the wall, m=s
v velocity component normal to the wall, m=s
x coordinate along the wall, m
y coordinate normal to the wall, m
z dummy integration variable

Greek Characters

a thermal diffusivity of water, m2=s
ao thermal diffusivity of water at inlet temperature,

To (m2=s)
DH phase change enthalpy of water, J=kg
ds substrate layer thickness, m
g normalized distance from the wall, y=d
l viscosity of water, kg=m=s
lo viscosity of water at inlet temperature, To

(kg=m=s)
q density of water, kg=m3

Subscripts and Superscripts

Overbar denotes dimensionless variables
Subscript ‘‘ave’’ denotes average value
Subscript ‘‘o’’ refers to inlet conditions
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Appendix

Proof of Equation (34)

Equation (34) denotes that the value (U �uave)d is a con-
stant. Taking the integral at all times, this constant can be
found from the time-averaged quantities. It therefore

remains to show that @ðU�uaveÞd
@tr

¼ 0, which can be written

[utilizing Equations (29)–(31)] as

@ðU� uaveÞd
@tr

¼ U
@d
@tr
� @uaved

@tr
¼ @d
@tr
� 1

U

@uaved
@tr

¼ @d
@tr
þ uave

@d
@x
þ d

@uave

@x
¼ @d
@tr
þ @uaved

@x
¼ 0
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