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Abstract

A mathematical framework is developed for studying the heat transfer through the metallic wall of an internally heated rotating

drum of a drum dryer. Contrary to the few earlier analyses that solved numerically the transient two-dimensional partial differential

equation of heat conduction until a cyclic steady state is reached, the present analysis transforms it to a one-dimensional integral

equation that can be solved directly for the cyclic steady state. In this new formulation the thermal inertia of the wall is directly

assigned to specific terms of the kernel of the integral equation which makes the assessment of its contribution very easy. A nu-

merical method for the solution of the integral equation is developed. An approximate solution method based on polynomial ex-

pansion is developed, too. Results from the different solution approaches of the effect of thermal inertia on the response of the dryer

are discussed for both simplified and realistic cases.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of drum dryers is a common industrial

practice for the production of a variety of foodstuffs

such as yeast creams, fruit purees, baby foods, mashed

potatoes, dry soup mixtures, pregelatinized starches etc
(Bonazzi et al., 1996; Moore, 1995). This type of drying

is suitable for products which are viscous in their natural

state or after concentration and as such they are better

dried in the form of very thin films (Falagas, 1985).

The most common type of this dryer consists of a

drying cylinder (drum) mounted on a horizontal axis

and mechanically rotated with variable speed control.

The drum is heated by steam condensing on its inside
surface, the drying effect being obtained by the transfer

of heat from the inside of the drum through its metallic
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wall to a film of material spread over its external surface.

Different methods have been employed in the past to

apply the material as a film over the drum surface de-

pending chiefly on the product�s rheological properties.
Spreading by submersion, by atomization, by auxiliary

non-heated small rollers, by using a twin-drum or a
double drum arrangement are among the most popular

drum dryer configurations. Gardner (1971) and Moore

(1995) have presented useful accounts on this topic.

Whatever the spreading method, the applied film is no

longer in motion relative to the drum because of rapid

drying and solidification. After travelling part of a revo-

lution, the dried material is removed in the form of thin

sheets by scraper knifes (doctor blades).
Theoretical modeling of the drum drying process is

very important for the design, optimization and control

of drum dryers. Yet, it is a very difficult task since drum

drying is a really complex process requiring except for a

submodel of the drying process itself, a fluid dynamics

submodel (for initial film deposition over the drum) and

a heat transfer submodel (heat conduction through the

drum solid wall). Trystram and Vasseur (1992) have
shown in detail how the different submodels can be
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effectively integrated in a global dryer model. The drying
submodel has been extensively studied by Vasseur and

co-workers (Abchir, Vasseur, & Trystram, 1988; Trys-

tram, Meot, Vasseur, Abchir, & Couvrat-Desvergnes,

1988; Trystram & Vasseur, 1992; Vasseur, Kabbert, &

Lebert, 1991b) and Daud and Armstrong (1987, 1988).

The fluid dynamics submodel has been examined by

Daud (1986). A recent contribution on this issue has

been presented by Vallous, Gavrielidou, Karapantsios,
and Kostoglou (2002). The focus of the present work is

on the heat transfer submodel.

Earlier studies did not realize the role of the thermal

inertia of the drum wall in the dryer�s heat transfer

performance. Fritze (1972, 1973a, 1973b), analyzed the

drum dryers� thermal efficiency in terms of overall heat

transfer coefficients, an approach which assumes a sta-

tionary (around the drum circumference) steady state
conduction through the drum metallic wall. Kozempel,

Sullivan, Craig, and Heiland (1986) developed a simple

model based also on the assumption of stationary steady

state heat fluxes through the drum wall. As a result, the

outside temperature of the drum was taken not only

constant in every angular position of the drum but also

equal to the temperature of the condensing steam which

is by far not true (e.g., Abchir et al., 1988; Vasseur,
Abchir, & Trystram, 1991a).

Daud and Armstrong (1987) relaxed the earlier ap-

proximation of steady state heat fluxes by taking the

thermal resistance of the drum wall into account and

divided the dryer into three angular zones with different

heat and mass transfer characteristics. However, the

great significance of the thermal inertia of the wall to

realistically model heat transfer in a drum dryer was
shown first by Abchir et al. (1988) and was further sup-

ported by Vasseur, Abchir, and Trystram (1991a) and

Trystram and Vasseur (1992). Recently, Karapantsios

and co-workers (Anastasiades, Thanou, Loulis, Sta-

patoris, & Karapantsios, 2002; Gavrielidou, Vallous,

Karapantsios, & Raphaelides, 2002; Kalogianni,

Xinogalos, Karapantsios, & Kostoglou, 2002; Vallous

et al., 2002; Vlachos & Karapantsios, 2000) communi-
cated the results of a large experimental campaign (1997–

2000) conducted on an industrial scale drum dryer.

These studies used modern instrumentation and data

analysis techniques to investigate the complex phe-

nomena governing the performance of a drum dryer.

This work is a step further, aiming to study the heat

transfer submodel of the drum dryer from a mathe-

matical point of view.
First, the mathematical problem is formulated in a

way that permits direct evaluation of the various physi-

cal properties and operational parameters that have a

significant contribution on the response of the system.

Next, several solution approaches are given in detail.

These solutions are compared for accuracy and consis-

tency in a case of a simplified drying submodel since the
latter has no influence on the basic features of the heat
transfer submodel. Typical results from the different

solution approaches are cross-examined for a few more

realistic cases. Possible extension of the proposed solu-

tion procedure to include terms such as heat losses to the

environment, a spatially variable Biot number at the

inside of the drum and a more realistic drying model are

discussed.
2. Problem formulation and solution

The temperature distribution T ðz; yÞ inside the drum

wall is given from the solution of the following equation:

uqcp
oT
oz

¼ k
o2T
oy2

ð1Þ

where y is the coordinate across the drum wall and z is a
length coordinate measured from the point (moment) of

material application as a film over the drum and it is

associated with time through the relation dz=dt ¼ u (u is

the velocity of the wall). Nissan and Hansen (1960)

presented the exact derivation of Eq. (1) with the ap-

propriate boundary conditions (BCs):
at y ¼ 0 (inner side of drum)

�k
oT
oy

¼ hðTv � T Þ ð2Þ

at y ¼ w (outer side of drum)

�k
oT
oy

¼ QðT ;X Þ for iL < z < iLþ L1 ð3aÞ

oT
oy

¼ 0 for iLþ L1 < z < ðiþ 1ÞL ð3bÞ

where Tv is the steam temperature, h is the steam-side

heat transfer coefficient (assumed constant for all z) and
k, q and cp are the thermal conductivity, density and
specific heat of the solid wall, respectively. Also, X is the

moisture content of the drying material (kg H2O/kg dry

solid), w is the wall thickness, L is the length of a full

rotation, L1 is the part of the revolution covered with

drying material and i is an index which denotes the

number of full rotations from the moment of initial

material application. Eq. (3a) couples the heat transfer

problem through the drum wall with the drying process
of the material spread over the external surface of the

drum. X is given from the solution of the following

ordinary differential equation (ODE):

uDH Cs

dX
dz

¼ �QðT ;X Þ for iL < z < iLþ L1 ð4Þ

where DH is the latent heat of water evaporation and Cs

is the so-called specific load (kg dry solid/m2).
The initial conditions are a prescribed value of tem-

perature for z ¼ 0, T ð0; yÞ ¼ T0ðyÞ, and a prescribed

value of moisture at the start of each cycle (rotation),
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X ðiLÞ ¼ X0. In the case where only the steady state cyclic
operation is of interest the index i in the above equations

can be disregarded since the temperature is periodic with

respect to z with period L and the temperature initial

condition must be substituted with T ð0; yÞ ¼ T ðL; yÞ.
The following non-dimensionalization is introduced

next:

z ¼ kz
w2uqcp

Bi ¼ hw
k

Q ¼ Qw
kTv

y ¼ y
w

p ¼ L1

L
L ¼ kL

w2uqcp
X ¼ X

X0

T ¼ Tv � T
Tv

D ¼ qcpwTv
DH CsX0

To keep the notation simple, some dimensionless

variables retain the symbol of their dimensional coun-

terpart. This is not confusing since in the rest of the

present work only dimensionless variables will be in-

voked.
Now the problem which must be solved takes the

form

oT
oz

¼ o2T
oy2

ð5Þ

with BCs

at y ¼ 0

oT
oy

¼ BiT ð6Þ

at y ¼ 1

oT
oy

¼ QðT ;X Þ for iL < z < ðiþ pÞL ð7aÞ

oT
oy

¼ 0 for ðiþ pÞL < z < ðiþ 1ÞL ð7bÞ

dX
dz

¼ �DQðT ;X Þ for iL < z < ðiþ pÞL ð8Þ

and initial conditions X ðiLÞ ¼ 1 and T ð0; yÞ ¼ T0ðyÞ.
The solution of the above problem can be written in

the following integral form

T ðy; zÞ ¼
Z 1

0

Gðz; y; 0; y0ÞT0ðy 0Þdy0

þ
Z z

0

Gðz; y; z0; 1Þ oT
oy

� �
y¼1

dz0 ð9Þ

where the Green�s function Gðz; y; z0; y0Þ is given from the

solution of the following equation

oG
oz

¼ o2G
oy2

þ dðz� z0Þdðy � y 0Þ ð10Þ

with the BCs

oG
oy

¼ BiG at y ¼ 0 ð11Þ
oG
oy

¼ 0 at y ¼ 1 ð12Þ

where the symbol delta denotes the Dirac delta function.

Eq. (10) can be solved as follows: first, the source
term (delta functions) is disregarded and the remaining

homogeneous partial differential equation (PDE) is

solved using the separation of variables technique. The

general solution of the homogeneous equation is given

as

G ¼
X1
i¼1

ai e
�k2i z

XiðyÞ
F

ð13Þ

where the eigenvalues ki are the roots of the following

transcantental equations

ki tanðkiÞ ¼ Bi ð14Þ
N is the normalization factor given from

F 2 ¼
Z 1

0

X 2
i ðyÞdy ð15Þ

and the eigenfunctions Xi have the form

XiðyÞ ¼ sinðkiyÞ þ
1

tanðkiyÞ
cosðkiyÞ ð16Þ

Next, the source term in Eq. (10) is expanded in a

series of the eigenfunctions Xi using the properties of the

orthogonal functions. Then, by equating this expansion

with the series (13), the unknown coefficients ai of (13)
are found. Finally, the Green�s function is determined

as:

Gðz; y; z0; y 0Þ ¼
X1
i¼1

1

F 2
e�k2i ðz�z0ÞXiðyÞXiðy0Þ ð17Þ

Eq. (9) is not amenable to an analytical solution since

the temperature distribution with respect to y for z ¼ 0

appears in its right hand side. In order to get rid of this,
lets assume the case for which the initial (with respect to

drying) temperature of the drum is equal to that of the

vapor. This is a quite realistic assumption since it is al-

ready assumed that the losses to the environment are

negligible and so by starting the vapor flow, the drum

after some time will reach the vapor temperature. The

drying process starts the moment the drying material is

applied over the drums for the first time (assumed to
happen instantaneously) and this is considered the be-

ginning of time (z ¼ 0). After some transient period of

several revolutions the system will finally reach a cyclic

steady state. This scenario offers a convenient way to

develop the direct solution for the cyclic steady state.

The initial condition of the drum temperature being

equal to the vapor temperature means that T0ðyÞ ¼ 0, so

the first term of the right hand side of Eq. (9) is elimi-
nated. The remaining equation combined with Eqs. (7a)

and (7b) demonstrate that the temperature anywhere

inside the drum shell can be determined provided that
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the temperature of the outer drum surface is known. In
this way, the 2D initial problem is reduced to the 1D

problem of finding the outer surface temperature.

Writing Eq. (9) for the outer surface temperature yields:

T ðz; 1Þ ¼
Z z

0

gðz; z0Þ oT
oy

� �
y¼1

dz0 ð18Þ

where the kernel function gðz; z0Þ is the Green�s function
Gðz; 1; z0; 1Þ and has the following explicit form

gðz; z0Þ ¼
X1
i¼1

di e�k2i ðz�z0Þ ð19Þ

where

di ¼ sinðkiÞ
�

þ cosðkiÞ
tanðkiÞ

�2
1

2

��
� sinð2kiÞ

4ki

�

þ 1

tan2ðkiÞ
1

2

�
þ sinð2kiÞ

4ki

�
þ sin2ðkiÞ
2ki tanðkiÞ

��1

ð20Þ

For the ease of presentation, the outer surface tem-

perature of the drum is denoted by Te (i.e TeðzÞ ¼ T ðz; 1Þ).
Substitution of the BC (7a) to Eq. (18) and splitting of
the integral per period leads to the following integral

equation:

Te ¼
Xi�1

j¼0

Z jLþpL

jL
gðz; z0ÞQðTe;X Þdz0

þ
Z iLþz

iL
gðz; z0ÞQðTe;X Þdz0 for iL < z < iLþ pL

ð21aÞ

Te ¼
Xi

j¼0

Z jLþpL

jL
gðz; z0ÞQðTe;X Þdz0 for iLþ pL < z < iLþ L

ð21bÞ

The above equations are a generalized form of the non-

linear integral Volterra equation and must be solved

combined with the ODE for the moisture to find the

outer surface temperature evolution. After some initial

transient time the drum dryer reaches a steady state

periodic operation and the temperature Te and moisture
distribution do not change from cycle to cycle. The so-

lution of the transient equations for the periodic steady

state is in general very difficult due to the fact that the

transient period may be very long. So, it is highly de-

sirable to find a formulation which admits direct com-

putation of the periodic solutions and avoids transient

computations.

Let us assume that the dryer operates for a very long
time and the cyclic operation has been already estab-

lished long ago. This means that the following condi-

tions hold

TeðzÞ ¼ Teðzþ iLÞ ð22aÞ

X ðzÞ ¼ X ðzþ iLÞ ð22bÞ
Eq. (21) apply now to every (new) cycle which is re-
numbered with i ¼ 0. All the previous cycles must have

the same temperature distribution according to the

conditions (22). So, Eq. (21) for the case of a cyclic

operation must be transformed to:

Te ¼
X�1

j¼�1

Z jLþpL

jL
gðz; z0ÞQðTe;X Þdz0

þ
Z z

0

gðz; z0ÞQðTe;X Þdz0 for 0 < z < pL ð23aÞ

Te ¼
X0
j¼�1

Z jLþpL

jL
gðz; z0ÞQðTe;X Þdz0 for pL < z < L

ð23bÞ
A very interesting observation is that Eq. (23b) gives

explicitly the temperature for pL < z < L if just the

temperature for 0 < z < pL is known. This practically

means that only the temperature between 0 and pL is
unknown and it must be found from the solution of Eq.

(23a). To further simplify the situation, the integration

limits in (23) are changed (subtraction of jL) and the

functions g are substituted from (19) to give:

Te ¼
Z pL

0

X�1

j¼�1

X1
i¼1

di e�k2i ðz�z0Þþjk2i LQðTe;X Þdz0

þ
Z z

0

X1
i¼1

di e�k2i ðz�z0ÞQðTe;X Þdz0 for 0 < z < pL

ð24Þ
This equation must be solved together with

dX
dz

¼ �DQðTe;X Þ ð25Þ

So, using the above analysis the two-dimensional

PDE (5) which should be originally solved for un-

bounded time is transformed together with its BCs to
the one-dimensional integral equation (24) which must

be solved for a specific time interval.
3. Exact solution of the integral equation

For the particular case where the evaporation rate is

not a function of temperature and also QðT ;X Þ ¼ aX ,
the temperature distribution can be obtained analyti-

cally as

Te ¼ a
X�1

j¼�1

X1
i¼1

di
k2i � aD

e�k2i zþjk2i Lðeðk2i �aDÞpL � 1Þ

þ
X1
i¼1

di
k2i � aD

ðe�aDz � e�k2i zÞ 0 < z < pL ð26aÞ

Te ¼ a
X0
j¼�1

X1
i¼1

di
k2i � aD

e�k2i zþjk2i Lðeðk2i �aDÞpL � 1Þ

pL < z < L ð26bÞ



M. Kostoglou, T.D. Karapantsios / Journal of Food Engineering 60 (2003) 453–462 457
4. Numerical solution of the integral equation

In general, the integral equation (24) must be solved

numerically. Before speaking about any numerical

method, it is apparent that the infinite series in Eq. (24)

must be truncated. The significance of the truncation

order is discussed next. The inner sum with respect to i
has to do with the addition of more eigenfunctions

(harmonics) to the solution of Eq. (5). As thermal inertia
gets more prominent, the temperature profile inside the

drum wall becomes steeper so more terms are needed for

the representation of the profile. On the other hand, the

outer summation with respect to j has to do with the

interaction between the cycles. As thermal inertial in-

creases more cycles must be taken into account in order

to find the cyclic solution. In both sums, the truncation

must be performed up to high enough values so as not to
influence the results of the numerical solution.

The numerical solution of Eq. (24) is by no means

trivial. Its structure is equivalent to that of a hyperbolic

PDE, so the usual discretization techniques lead to sig-

nificant dispersion/numerical diffusion errors. In other

words, the kernel functions are singular at z ¼ 0 (but the

singularity is integrable), so direct numerical integration

is not possible.
This problem can be overcome as follows: first, a

partition zi ¼ iH is defined on the interval ½0; pL�, where
i ¼ 0; 1; 2; . . . ;N and H ¼ pL=N . Let Tei, Xi and Qi be the

values of the corresponding quantities at zi. The crucial

point is the assumption that in the interval (zi; ziþ1), Q
equals to ðQi þ Qiþ1Þ=2. By substituting this in Eq. (24),

the integrals for each interval can be evaluated analyti-

cally. Additionally, this substitution is equivalent to the
trapezoidal rule (second order accuracy as regards in-

tegration with respect to Q). The result of the above

procedure is ðm ¼ 0; 1; 2; . . . ;NÞ

Tem ¼ 1

2

XN
k¼1

bmkðQk þ Qk�1Þ þ
1

2

Xm
k¼1

cmkðQk þ Qk�1Þ

ð27Þ
where

bmk ¼
X�1

j¼�1

X1
i¼1

di
k2i

ðe�k2i zmþk2i jLÞðek2i zk � ek
2
i zk�1Þ ð28aÞ

cmk ¼
X1
i¼1

di
k2i

e�k2i zmðek2i zk � ek
2
i zk�1Þ ð28bÞ

Eq. (25) is integrated analytically to give

X ¼ 1� D
Z z

0

Qdz ð29Þ

The discretized form of the above equation using the
trapezoidal rule is

Xm ¼ 1� HD
Q0 þ Qm

2

 
þ
Xm�1

k¼1

Qk

!
ð30Þ
Finally, the problem is closed by assuming the rela-
tion between heat flux and surface temperature with the

moisture content which, being evaluated at the discreti-

zation points, gives the following set of equations

Qm ¼ QðTem;XmÞ ð31Þ

The Eqs. (27), (30) and (31) constitute a system of

3N þ 3 equations which must be solved simultaneously.

This can be done easily using an iterative strategy.

Starting with an estimation for Qm, Eqs. (27) and (30)

are solved for the computation of Tem and Xm, respec-

tively, and then these values are substituted to (31) to

give improved values for Qm. Evidently, the convergence
of the above procedure depends on how close is the

initial estimation to the required solution. A good initial

estimation leads to convergence after few iterations. As

the initial estimation becomes poorer, the required

number of iterations increases and finally the method

diverges. In that case, the Newton–Raphson method

must be used for the solution of the problem. The

Newton–Raphson method ensures convergence and
needs smaller number of iterations than the above direct

procedure. The computational cost per iteration is kept

low by using the analytically computed Jacobian of the

system. The elements of the ðN þ 1Þ � ðN þ 1Þ Jacobian
are

Jmk ¼ dmk � QT ðTem;XmÞhmk � QX ðTem;XmÞemk ð32Þ

where

2hmk ¼ ð1� dk0Þbmk þ ð1� dkN Þbmkþ1 þ ½ð1� dk0Þcmk
þ ð1� dkN Þcmkþ1�Uðk � mÞ

2emk ¼ ½ð2� dk0 � dkN ÞHD�Uðk � mÞ

The subscript X or T of Q denotes partial derivative
with respect to the corresponding variable, the symbol

dij is the Kronecker delta and the function UðxÞ takes

the value 1 for x6 0 and 0 in any other case.

It must be mentioned that the above constitutes an

implicit type discretization method so the solution of the

problem is stable irrespective of the grid size.

Finally, the temperature Te for pL < z < L can be

computed as

Te ¼
1

2

XN
k¼1

X0
j¼�1

X1
i¼1

di
k2i

ðe�k2i zmþk2i jLÞðek2i zk � ek
2
i zk�1Þ

� ðQk þ Qk�1Þ ð33Þ
5. Polynomial (quadratic) approximation

The low order polynomial approximation of the

unknown function as a method for the solution of

PDEs has a long history in transport phenomena
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(Crank, 1975; Ozisik, 1989). This method is much better
than neglecting completely the thermal inertia since it

permits the development of a temperature profile but

due to the low order of the polynomial, the approxi-

mation of steep profiles is poor and the method is not

appropriate for a very large thermal inertia. The qua-

dratic approximation assumes that the temperature

distribution in the drum wall (y-direction) has the fol-

lowing polynomial form

T ¼ c1 þ c2y þ c3y2 ð34Þ
where ci are unknown functions of z which must be

determined in order to satisfy (as closely as possible) the

BCs and the PDE. The mean temperature Tm across the
wall (y-wise) is given by taking the integral of (34) for y
from 0 to 1:

Tm ¼ c1 þ c2=2þ c3=3 ð35Þ
Substituting the above in the BC (7b) for the inner

wall leads to the following expression:

T ¼ Tm þ BiðTm � c3=3Þ
1þ Bi

2

ðy � 1=2Þ þ c3ðy2 � 1=3Þ ð36Þ

The integral with respect to y of Eq. (5) with limits at
y ¼ 0 and 1 after using the BCs leads to

dTm
dz

¼ QðT ð1Þ;X Þ � BiT ð0Þ ð37Þ

where T ð1Þ and T ð0Þ can be found from Eq. (34) by

substituting y ¼ 1 and 0, respectively. From the above it

is obvious that the remaining unknown quantities are
the mean temperature Tm, the coefficient c3 and the

moisture content X . The differential equation for X is

the following

dX
dz

¼ �DQðT ð1Þ;X Þ ð38Þ

By substitution of Eq. (36) to the BC (7a), we end up
with the following implicit algebraic equation for c3

2

 
� Bi

3
1

�
þ Bi

2

��1
!
c3

¼ QðT ð1Þ;X Þ � BiTm 1

�
þ Bi

2

��1

ð39Þ

The differential–algebraic system of equations (37)–
(39) must be integrated numerically in order to obtain

the evolution of the temperature distribution. A Runge–

Kutta explicit integrator with adaptive step size and

prespecified accuracy (Press, Teukolsky, Vetterling, &

Flannery, 1992) is used for the differential equations (37)

and (38) while (39) is solved for c3 in each time step by

an iterative procedure using the previous step values of

c3 as an initial estimation. Convergence is typically
achieved in three or four iterations. The integration is

started using a zero initial mean temperature and is

continued until the establishment of a cyclic operation.
6. Possible generalizations of the proposed solution
procedure

The possibilities of extending the proposed method of

solution to include more terms (effects) is discussed next.

Before that, it is useful to survey its basic features. After

the selection of a particular discretization (which can be

non-uniform), the coefficients bmk and cmk can be com-

puted. These coefficients are functions only of L and Bi
and not of the drying kinetics QðT ;X Þ, so they can be

computed directly (independently of the drying kine-

tics). After this, the resulting system of algebraic equa-

tions is solved using the Newton–Raphson method to

find the outer wall temperature in the part of the drum

covered with the drying material. The outer wall tem-

perature at the bare surface of the rest of the drum

(between the doctor blades and the new material feed
point) is computed in a post-processing step.

The present method of solution is developed for the

aforementioned idealized case but it can be extended to

more realistic cases. A first complexity is to assume a

heat loss model (natural convection, radiation) towards

the environment. This feature can be easily added to

the proposed methodology. The discretization of the

whole drum dryer surface is needed and the outer wall
temperature results directly from the solution of the

algebraic system of equations. A much more difficult

case is that of a spatially dependent (in the angular

direction) heat transfer coefficient between the vapor

and the inner surface of the drum. In practice, this is a

quite true situation due to the condensate film flowing

down the inner drum wall and also the condensate ac-

cumulating at the bottom of the drum. To accommodate
a spatially dependent Biot number, considerable new

development is required. The Neumann–Neumann–

Green functions, which are independent of the Biot

number, should be used instead of the Robin–Neumann

used in the present analysis. Then two integral equa-

tions are constructed which relate the outer with the

inner wall surface temperatures. Obviously, in this

case both surfaces of the drum dryer wall must be dis-
cretized in order to solve for the corresponding tem-

peratures.

Finally, the function QðT ;X Þ may not be a simple

algebraic expression but rather a complicated drying

model (e.g. Daud & Armstrong, 1987, 1988). Such a

model typically consists of a set of PDEs for heat and

mass transfer in a domain with a moving boundary. This

model must be solved in combination with the equation
of heat transfer in the drum wall. The proposed meth-

odology can be used even in this case. In each iteration

for the outer wall temperature, the solution of the drying

model is needed. In another approach, the problem to be

solved can be restricted to the domain of the material

(drying model) by eliminating the wall domain, using

Eq. (24) as a BC. This approximation discards also the
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explicit time dependency and a steady state (cyclic)
problem has to be solved.
Fig. 2. Dimensionless outer surface temperature versus M (bound of

index j) for several values of L. Analytical solution.
7. Results

In a first step, we shall try to examine the influence of

the number of terms used in series (28) on the results.

The outer sum is truncated to j ¼ �M and the inner one
to i ¼ K. In order to identify the sensitivity with respect

to M and K, the analytical solution will be used since all

the basic features of the process are still adequately

represented when assuming QðT ;X Þ ¼ aX and p ¼ 1.

The parameters for this simple case are L (which can be

seen as the Fourier number of the process or alterna-

tively as an inverse rotation frequency) and aDL which

denotes how sharp is the heat flux profile. A typical
range of the parameter L is between 0.1 and 5 whereas a

typical range of aDL is between 3 (slow drying) and 15

(fast drying).

In general, the parameter L dictates the value of M
whereas the parameter aDL dictates the value of K which

is needed for accurate results. First, the relation between

L and M is examined. In Fig. 1, the dimensionless tem-

perature profiles of the outer wall of the drum are shown
for several values of M when L ¼ 0:1 and aDL ¼ 3.

Apparently, the M ¼ 1 (no thermal inertia) approxima-

tion is quite in error and at least M ¼ 25 is needed to get

an accurate result. In Fig. 2, the value of the outer drum

temperature at z ¼ 0:2L is given as a function of M for

several values of L. As L increases (rotation speed drops)

the number of terms needed for convergence decreases.

For L ¼ 1,M ¼ 2 is enough for an accurate solution and
even the zero thermal inertia approximation (M ¼ 1) is a

rational one. The significance of M is that it denotes the

number of cycles over which one must integrate Eq. (1)

starting with an initial temperature equal to that of

vapor, in order to reach a cyclic steady state.

A typical value L ¼ 0:5 is assumed in order to see the

effect of the parameter aDL on the number K of i-terms
Fig. 1. Dimensionless outer surface temperature along the drum for

several values of M (bound of index j). Analytical solution.
needed for an accurate solution. In Fig. 3, the outer

temperature profiles are shown for aDL ¼ 15 and for

several values of K. The convergence is fast for large

values of z and very slow for small values of z (at least
K ¼ 20 terms are required). This behavior is attributed

to the discontinuity exhibited by the flux Q at z ¼ 0. It

must be stressed though, that unlike the case of a dis-

continuous temperature at z ¼ 0 where the flux exhibits

a singularity, here the series solution converges every-

where using a finite number of terms (even for z ¼ 0). In

Fig. 4, the temperature at z ¼ ð4=50ÞL is shown as a

function of the number of inertial terms K and for
several values of aDL. It is interesting that the conver-

gence is not improved as the drying gets slower. This is

because the key contribution to thermal inertia emerges

from the sudden onset of drying and not from the slope

of the drying curve.

The above results refer to the case of no heat transfer

resistance between the condensing steam and the inter-

nal drum surface (Bi ¼ 1). The question now is how the
Biot number influences the convergence properties of

the solution. In general, as Biot decreases the tempera-

ture profile across the wall thickness becomes more

uniform, so the number of eigenfunctions (K), which is

needed to accurately represent it, decreases. On the
Fig. 3. Dimensionless outer surface temperature along the drum for

several values of K (bound of index i). Analytical solution.



Fig. 5. Temperature difference KT (�C) between the condensing vapor

and the outer surface of the drum along the drum surface. Comparison

between the numerical solution employing several values of K and the

polynomial approximation approach.

Fig. 4. Dimensionless outer surface temperature versus K (bound of

index i) for several values of the product aDL. Analytical solution.
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other hand, the dynamics of the system becomes slower
which means that a larger number of cycles (M) must be

taken into account to get the steady state cyclic solution.

In conclusion, a decrease of Bi leads to an increase of M
and a decrease of K that must be taken into account in

order to have a convergent solution.

In a second step, the mathematical model will be

solved for a realistic scenario of bakers yeast drying

(Vasseur et al., 1991). These authors suggested the fol-
lowing empirical expression for the drying rate (with the

variables in their dimensional form):

QðT ;X Þ ¼ a1ðT � 373Þa2C�a3
s ð1� e�X=a4Þa5

where ai�s are constants which depend on the drying
material. For the bakers yeast their values are a1 ¼ 539

kW/m2, a2 ¼ 1:24, a3 ¼ 0:17, a4 ¼ 1:24 and a5 ¼ 1:45. A
typical single drum dryer is assumed with external dia-

meter of the drum equal to 0.5 m and thickness of the

wall 2 cm. The material to be dried is already preheated

close to its boiling temperature and it is instantaneously

applied over the drum surface. The fraction of the drum

surface which is covered by the material is p ¼ 0:72. The
following simulations are done for initial moisture

content X0 ¼ 4, rotation speed f ¼ 4 rpm (it is noted

that u ¼ 2pRf where R is the radius of the drum), spe-

cific load Cs ¼ 0:03 kg dry matter/m2 and vapor tem-

perature Tv ¼ 130 �C. It is also assumed that the

resistance to heat transfer from the condensing vapor to

the drum is very small so Bi ¼ 1. Although this as-

sumption is not realistic, it can be used to assess the
effect of thermal inertia. In the experiments of Vasseur

et al. (1991a) where the actual Bi varied around the

drum dryer, it was shown that the temperature of the

inner surface of the drum was almost constant. This

means that the actual heat transfer problem is equiva-

lent to the case where Bi ¼ 1 and an effective vapor

temperature is used instead of the real one. The latter

problem is actually what is solved in the present work.
The simulation of the drum dryer performance under

the above conditions is done using 50 discretization

points. A poor discretization becomes evident through
oscillations of Qi�s close to x ¼ 0 where the flux is high.
Increasing the number of discretization points or alter-

natively using a non-uniform grid with more points

close to x ¼ 0 always leads to a smooth distribution of

the flux. A value of M ¼ 10 is enough for the particular

problem to ensure periodicity in time. The temperature

difference between the external surface of the wall and

the condensing steam along the inside drum periphery is

shown in Fig. 5. The exact result is that taken using
K ¼ 20 to account properly for thermal inertia. For

comparison, Fig. 5 also includes the results for K ¼ 1

(uniform temperature approximation), K ¼ 3 and the

quadratic polynomial approximation developed in the

present work. The K ¼ 1 solution underpredicts con-

siderably the temperature difference since the high initial

flux (proportional to the plotted temperature difference)

cannot be properly computed when the temperature
distribution across the wall thickness is ignored. In-

creasing K, the result converges to the exact solution

downside. On the other hand, the polynomial model

overpredicts the temperature difference showing a sud-

den initial jump. It is noteworthy that whereas the K ¼ 3

and the polynomial approximations are of the same

order (both use 3 terms of expansion to represent the

temperature distribution across the wall), they give quite
different results due to the different basis functions (ei-

genfunctions of the operator versus polynomials). De-

spite their different results, the two approximations are

comparable in terms of accuracy. The small disconti-

nuity in the slope of the curve for K ¼ 20 at length equal

to 1.13 m corresponds to the flux discontinuity at the

removal point of the material. Evidently, only the

K ¼ 20 approximation is capable to capture this dis-
continuity.

From a practical point of view, the most important

outcome of the simulation effort is the prediction of the

final moisture Xf . The moisture distributions which

correspond to the temperature distributions of Fig. 5,



Fig. 8. The convergence of final moisture content Xf as the number of i
terms increases for two values of the drum wall thickness.
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are shown in Fig. 6. The scale is logarithmic in order to
exaggerate the differences in the region of low moisture.

Initially, all the models follow the same moisture curve

but soon differences arise among them which progres-

sively increase along the drum periphery. The truncated

(K ¼ 1 and 3) approximations underpredict the mois-

ture content, leading to a final moisture 20% smaller

than the value of the exact solution, whereas the poly-

nomial approximation overpredicts it. While the poly-
nomial approximation is comparable to the K ¼ 3

solution in terms of temperature, it is inferior in terms of

moisture. The above analysis showed that only the use

of the exact solution approach, with enough terms, can

ensure the accuracy of the results.

In order to demonstrate the use of the model for a

parametric analysis, the effect of varying the thickness of

the drum wall (in a realistic range of values) on moisture
distribution is shown in Fig. 7. By reducing the wall

thickness from 2 to 1 cm, a 35% decrease of the final

moisture Xf is achieved. The convergence of the final

moisture Xf to its exact value as the number K of the

eigenfunctions increases, is shown in Fig. 8 for two

different values of the wall thickness. Evidently, the

number of K terms needed for an accurate result de-
Fig. 6. Evolution of the moisture content along the drum. Comparison

between the numerical solution employing several values of K and the

polynomial approximation approach.

Fig. 7. Effect of the drum wall thickness, w, on the evolution of

moisture content, X , along the drum.
pends on the particular conditions of the process. Here,

for the thinner wall the thermal inertia is smaller so the

convergence is achieved with a smaller K. In all cases

under realistic conditions, K does not need to exceed 30.

The present steady state mathematical model can be

used for design and optimization of the process and also

for control. In order to show this capability, the final

moisture content of the product is displayed in Fig. 9 as
a function of the rotation speed f and vapor tempera-

ture Tv. Although the analysis includes a major simpli-

fication since Cs is assumed constant (it should be a

function of f and Tv through a fluid dynamics sub-

model), it is yet enough to demonstrate the idea. As-

suming a change of steam pressure and of the

corresponding temperature Tv, the model must be solved

to find the new rotation speed f that ensures that the
product final moisture remains unchanged. This corre-

sponds to the construction of the iso-moisture curves in

Fig. 9.

The present implicit formulation of the mathematical

problem makes it ideally suited for the above design

purposes. Using instead a direct method of solution, the

whole model should be solved iteratively until the

computed Xf becomes equal to the desired value. This
outer iteration loop is not needed by the present

algorithm since the desired Xf value can be directly
Fig. 9. Dependence of the final moisture content, Xf , from the vapor

temperature, Tv (�C), and the rotation frequency, f (rpm).
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incorporated in the existing Newton–Raphson code
without increasing the computational cost. In this case,

the unknown in the Newton–Raphson procedure is a

control variable (e.g. Tv or f ) instead of Xf .
8. Conclusions

The purpose of the present work is to examine the
effect of the thermal inertia of the drum wall in steady

state (cyclic) drum drying of food material. In order to

make this effect explicit, the 2D PDE of heat transfer is

transformed to an 1D integral equation which can be

solved directly for the surface temperature at the cyclic

steady state. A numerical approach is developed for the

solution of the integral equation. The present calcula-

tions show that the effect of the drum wall thermal in-
ertia is significant in typical drum dryers and ignoring it

can lead to erroneous results. In general, the effect of

thermal inertia decreases as the thickness of the wall

decreases and as the drying rate decreases. The mathe-

matical framework developed here for the solution of

the heat transfer model of drum drying can be incor-

porated into a more global drum drying model leading

to a powerful simulation tool for industrial drum dryers.
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