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This work demonstrates how electrical conductance measure-
ments can be employed for the study of liquid bridge behavior when
their volume varies with time while their separation distance re-
mains constant. The liquid bridges are edge pinned between two
vertical, identical rods (r-bridges) at varying separation distances.
Liquid evaporation is used as a means of reducing the bridge volume
in a continuous smooth fashion. A zero-order continuation sequence
with respect to Bond number and liquid bridge volume is combined
with the shooting method for the solution of the Young–Laplace
equation to give the liquid bridge shape as a function of its instan-
taneous volume. A novel, very efficient computational scheme is
developed based on singular perturbation expansion for the solu-
tion of the Laplace equation in the liquid bridge to compute its
electrical conductance that proved faster by orders of magnitude
compared to other alternative approaches. The potential for esti-
mating the liquid bridge characteristics or the evaporation rate
by matching the experimental and theoretical results is discussed
extensively. C© 2002 Elsevier Science (USA)

Key Words: liquid bridge; evaporation; electrical conductance.
INTRODUCTION

The study of liquid bridges between solid surfaces has been
the subject of extensive research due to the large number of
applications in which liquid bridges are encountered. Some ex-
amples are the study of the distribution of phases in porous media
with respect to oil recovery applications, adsorption hysteresis
in porous adsorbents, capillary evaporation/condensation, and
the binder-induced agglomeration of particles which is of im-
portance in operations such as flotation, coating, flocculation,
and granulation.

In order to determine the shape of a liquid bridge, the sur-
face tension of the liquid and its contact angle with the solid
are needed. In many cases these two parameters are directly es-
timated from experimental evidence of liquid bridge behavior.
This is actually the inverse problem, i.e., to estimate surface
tension or/and contact angle from liquid bridge characteristics.
One way to do this is by measuring the force exerted by the
liquid bridge to its supporting solid boundaries. However, it ap-
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pears that force measurements suffer from inevitable stability
problems which require excessively meticulous procedures and
further filtering of the data. Particularly when working with solid
spheres, buoyancy corrections may make force data reduction
very cumbersome (1). Errors from these sources may be appre-
ciable considering the very small size of the bridges. Another
approach is to identify the complete liquid bridge profile, using
image processing techniques. In a recent work (2), the effective
electrical conductance of conducting liquid bridges is suggested
as a characterestic parameter from which liquid bridge features
can be directly deduced. Electrical conductance was measured
easily using a modified version of a technique originally de-
veloped in (3) to study flow characteristics in thin liquid films.
In (2), the conductance of a constant volume liquid bridge was
measured and analyzed with respect to change of bridge length.
Here, the conductance technique is extended to the case of a liq-
uid bridge with an evolving (reducing) volume. From an experi-
mental point of view this can be easily realized by exploiting the
evaporation of liquid from the bridge. Provided that the driving
force for evaporation is small enough, liquid bridge temperature
can be considered effectively constant.

The equilibrium shape of liquid bridges can be found from the
solution of the Young–Laplace equation which has been the sub-
ject of many works. An early account is given in (4). Among the
various bridge configurations, considerable attention has been
given to the shape of liquid bridges between two spherical parti-
cles as a prototype for the study of phenomena (e.g., evaporation,
condensation, oil recovery, etc.) in porous media. In particular,
when the two spheres are in contact, then the liquid bridges are
also called menisci. The menisci between contacting spheres
has been studied by Melrose (5) for zero Bond number and Saez
and Carbonel (6) for nonzero Bond number. The more general
problem of liquid bridges between spheres has been studied by
Erle et al. (7) (for zero contact angle), De Bisschop and Rigole
(8), and Lian et al. (9) for zero Bond number. Recently, Simons
et al. (10) gave approximate expressions for the attractive force
imposed to the pair of spheres by the liquid bridge in the context
of particle agglomeration. This force has been measured in (11).

The liquid bridges between plane surfaces have been stud-
ied by Fortes (12) for restricted (rods) and infinite (with contact
angle as parameter) surfaces and for zero Bond number. The
study of these liquid bridges in a gravity field was made by
7 0021-9797/02 $35.00
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Boucher and Evans (13) for restricted surfaces and by Boucher
et al. (14) for infinite surfaces. Latter, a stability analysis was
given for the restricted surfaces problem and zero gravity by
Boucher and Jones (15). The problem was extended for rotating
liquid bridges on infinite surfaces by Hornung and Mittelman
(16). The above references are only indicative and by no
means exhaust the vast amount of literature devoted to the
subject.

The main effort in this work is devoted to the development
of a computational scheme that gives the electrical conductance
of the bridge as a function of bridge volume. The present work
has the following structure. First, the procedure for the compu-
tation of the liquid bridge shape is explained in detail. Then,
a method for the computation of the conductance of the liquid
bridge is developed based on the singular perturbation expansion
technique. The description of the experimental procedures and
results from some representative experiments comes next, and
finally, the theoretical and experimental results are compared
and discussed.

THEORY

Liquid Bridge Shape

Let R be the radius of the rods and D the distance between
the rods (see Fig. 1). Then, the shape of the axisymmetric liquid
bridge Y (X ) is given from the solution of the Young–Laplace
equation (Y, X , and D are made dimensionless by division
with R),

− d2Y

dX2

(
1 +

(
dY

dX

)2)−3/2

+ 1

Y

(
1 +

(
dY

dX

)2)−1/2

= H − BoX, [1]

where the Bond number is defined as Bo = ρgR2/γ , where ρ

and γ are the density and surface tension, respectively, of the
liquid that constitutes the liquid bridge. H is the dimensionless
(using γ /R) pressure in the bridge at X = 0 and it is useful in
the evaluation of the force between the rods due to the existence
FIG. 1. Geometry of the liquid bridge.
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of the liquid bridge. In the present work, where the evaluation
of the above force is not needed, H is only a dummy parameter
that must be adjusted in order to satisfy the boundary conditions
of Eq. [1].

Although in some cases the above form of the Young–Laplace
equation has been solved using a finite element method (17), it
is generally known that the numerical solution of this form has
several problems due to pronounced sensitivity to the numeri-
cal accuracy (18). For this reason a variable transformation is
suggested which results to a system of ordinary differential equa-
tions with the arc length of the liquid bridge as the independent
variable,

d�

dS
= H − BoX − sin(�)

Y
[2a]

dY

dS
= cos(�) [2b]

dX

dS
= sin(�), [2c]

where S is the dimensionless arc length of the liquid profile
from the point (Y, 0) to the point (Y, X ) and � is the angle
between the profile and the horizontal. A further simplification
is possible due to the fact that the total arc length of the liquid
bridge is not concerned in the present work. By proper division
between the equations the following simplified system with X
as the independent variable arises:

d�

dX
= H − BoX

sin(�)
− 1

Y
[3a]

dY

dX
= 1

tan(�)
. [3b]

The boundary conditions are Y (0) = Y (D) = 1. The total vol-
ume of the liquid bridge (nondimensionalized with π R3) is given
as

V =
D∫

0

Y 2(X ) dX . [4]

The above equation is written as a differential equation with
respect to X and is added as a third equation to the system [3],

dv

dX
= Y 2(X ), [5]

with v(0) = 0 and V = v(D).
The system of Eqs. [3a], [3b], and [5] with the correspond-

ing boundary conditions constitute in general a boundary value
problem. From the four parameters of the problem V, D, H , and

�(0), two must be given as input and the other two must be com-
puted as a part of the solution of the boundary value problem.
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Several strategies for the solution of the problem exist according
to the selection of input variables. Using as input variables H
and �(0), the boundary value problem is transformed to a very
simpler initial one, which is directly integrated for the shape of
the liquid bridge (e.g., Refs. 12 and 14). The distance D between
rods can be found from the condition Y (D) = 1 and the liquid
volume from Eq. [4], and then a table of V, D, H , and �(0) can
be constructed for the evaluation of liquid bridge geometry.

Another approach is to use as an input variable, either H or
�(0), and to find the other one based on the requirement that
V or D must have a specific value. In this scheme also, tables
such as those of the previous case can be constructed. Several
aspects of this method have been used (with Newton Raphson
iterations (19) or bisectional searching (9)) for liquid bridges
hanging between spherical particles.

However, from an experimental standpoint it is better to have
V and D as input parameters because these are the directly ac-
cessible and controlled parameters. In this case the boundary
value problem has two unknowns so its solution is more diffi-
cult. This approach has been used in a closely related problem
by Spencer et al. (20), who developed a method for the deter-
mination of interfacial tension from measurements of the force
required to withdraw an axisymmetric solid body from a two-
fluid interface contained in a cylindrical vessel. Their method
for the solution of the problem is based on successive quadratic
programming with the use of Lagrange multipliers to handle
equality constraints.

In the present work a simple shooting method similar to that
used in (2) is employed (the basic problem is essentially the
same), but the continuation procedure is different since the main
continuation parameter is now the bridge volume V and not
the distance D. The problem is to solve the system [3] and [5]
with the respective boundary conditions and to find the values
of H and �(0) that give a specified liquid volume V . First, a
value of H and �(0) is assumed and the initial value problem
is integrated with the use of an explicit Runge Kutta integrator
with self-adjusted step and prespecified accuracy (21) to find the
Y (D) and the V ′ value; the prime designates temporal values of
the parameters. The Newton Raphson method with numerically
computed derivatives is used for the correction of the H and �(0)
values. The convergence has been achieved when Y (D) = 1 and
V ′ = V . So, in principle, for every pair of D and V values the
liquid bridge shape can be computed by the above procedure.
But in practice there are additional complexities. The equations,
although they are not stiff, show an excessive parametric sensi-
tivity with respect to H . This means that the solution of Eqs. [3]
and [5] can be quite different for almost identical values of H .

The existence of this parametric sensitivity means that a very
good estimation of H is needed for the Newton Raphson method
to converge. This problem is overcome by the use of a continua-
tion approach. The complete procedure is as follows: For a given
value of D and a given Bond number Bo, a cylindrical liquid

′
bridge is assumed with Bo = 0 and V = D. Having an exact
solution (cylindrical shape with �(0) = π/2 and H = 1 for the
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zero Bond number), a zero-order continuation procedure with
respect to Bo′ is started. This means that the Bond number is in-
creased and the initial values for the new Newton Raphson step
is the converged values of the previous step. After the required
Bond number Bo is reached, a new zero-order continuation pro-
cedure with respect to V is started from V = D to the required
volume value.

The above procedures are similar to the numerical integration
of an initial value problem with Bo′ and V as time-like vari-
ables, successively. The step size of V must be very small in
order to ensure convergence of the Newton Raphson method.
If values of V larger than D are to be studied, then another
continuation sequence starts from V = D toward the required
volume value (this time by increasing V ). The major advantage
of the algorithm is that the entire sequence of bridge shapes and
bridge conductances with respect to a reducing bridge volume
for specified Bo and D is taken in just one run of the code.

The employed continuation method ensures that from the two
possible solutions the stable one is always taken. This can be
demonstrated using Fig. 7a of Ref. (12), which displays the pos-
sible configurations (with angle θ = π − �(0)) of liquid bridges
for the present problem in V and D axes. Although that graph is
for a zero Bond number, it is known that the general behavior is
the same for finite Bond numbers (13). To facilitate the demon-
stration of the proposed procedure, the regions of the possible
bridge configurations are shown qualitatively in Fig. 2. It is clear
from the figure that for bridges with θ < π/2 and V smaller than
a certain value there are two possible configurations of the bridge
for every V, D pair from which only that of lower θ is stable.
The continuation sequence starts from the diagonal of the above-
mentioned figure, first crosses the region of a unique solution,
and finally passes to the region of two possible configurations.
This trajectory is a straight line parallel to the V axis. The para-
metric sensitivity that was previously mentioned ensures that the
Newton Raphson method converges to the stable solution when
passing from one region to the other since it is impossible to roll
toward the unstable solution that has a clearly larger θ value.
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FIG. 2. Trajectories of the continuation procedure on a phase diagram of
the liquid bridge.
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The continuation stops when the stability limit curve is reached.
At this point, rupture of the liquid bridge occurs, V = Vrup. Our
code has been tested extensively to reproduce the results that are
given in Fig. 7a of Ref. (12) for zero-gravity conditions.

Conductivity Problem

If an electrical potential difference exists between the two
rods and the conductivity of the liquid in the bridge is uniform
all over, the potential distribution in the bridge is given by the
solution of the following Laplace equation:

1

r

θ

θr
r
θ P

θr
+ θ2 P

θ X2
= 0 in 0 < r < Y (X ) and 0 < X < D,

[6]

where P is the electrical potential normalized to be 1 at the one
rod and 0 at the other. The boundary conditions for the above
equation are

P = 1 for X = 0 and 0 < r < 1 [7a]

P = 0 for X = D and 0 < r < 1 [7b](
θ P

θn

)
r=Y (X )

= 0, [7c]

where n is the unit normal vector.
Having found the potential distribution in the bridge, the

dimensionless conductance Kapp can be computed from the
relation

Kapp = −2

1∫
0

(
θ P

θ X

)
X=0

r dr. [8]

The conductance is made dimensionless with σ R, where σ is
the specific conductivity of the liquid. The above mathematical
problem is quite similar to the extensively studied problem of
heat transfer in fins (22). Equation [6] can be in general solved
using typical numerical methods as finite elements, finite dif-
ferences, or even boundary elements. But for the present appli-
cation, where for every evaporation experiment Eq. [6] must be
solved many times due to the evolving computational domain
shape, the above methods are computationally intractable. Some
approximate solutions based on the smallness of the derivative
dY/dX have been developed for the problem of heat transfer
from fins (22). These solutions usually arise in a nonformal way
but Kevorkian and Cole (23) showed that they are actually the
zero-order term of a singular perturbation expansion of the solu-
tion. This zero-order term has a restricted range of validity and
more terms are needed to take accurate results for realistic liquid
bridge shapes. The derivation of the higher-order approximate
solution which combines accuracy (at least for bridge shapes

used in the present work) and computational efficiency is de-
scribed next.
ND KOSTOGLOU

The X -axis is rescaled as

x = 1

D
X,

so a new parameter ε = 1
D appears. The problem can be written

now as

∂2 P

∂r2
+ 1

r

∂ P

∂r
+ ε2 ∂2 P

∂x2
= 0 in 0 < r < Y (x) 0 < x < 1,

[9]

with boundary condition

∂ P

∂r
= εY ′(x)

∂ P

∂x
at r = Y (x), [10]

and

P(0) = 1, P(1) = 0 for 0 < r < 1,

where prime denotes derivative with respect to x .
We will try next to solve the above problem for ε � 1. In this

case the following series converges:

P =
∞∑

i=0

Piε
2i , [11]

so substituting [11] in [9] and [10], it is taken respectively,

∂2 Pi

∂r2
+ 1

r

∂ Pi

∂r
= −∂2 Pi−1

∂x2
(1 − δi0) [12]

∂ Pi

∂r
= Y ′(x)

∂ Pi−1

∂x
(1 − δi0) r = Y (x), [13]

where δi j is the Kronecker delta (1 for i = j and 0 for i 
= j).
It can be inferred that the functions Pi have the following

form:

Pi (x, r ) =
i∑

j=0

Bi, j (x)r2 j . [14]

Substituting this in [12] gives

1

r

∂

∂r
r
∂ Pi

∂r
= −

i−1∑
j=0

B′′
i−1, j r

2 j , [15]

where the prime denotes the derivative with respect to x .
Integrating twice with respect to r results in

Pi = −
i−1∑
j=0

B ′′
i−1, j

r2 j+2

(2 j + 2)2
+ c1ln(r ) + c2, [16]

where the integration constants c1, c2 are in general functions

of x . The requirement that Pi must be finite at r = 0 leads to
c1 = 0.
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Now, substituting Pi from [14] to [16] and equating the terms
having the same power of r yields

Bi, j = − B ′′
i−1, j−1

(2 j)2
for i ≥ 1 and 1 ≤ j ≤ i. [17]

The series form of Pi (Eq. [14]) is substituted at the boundary
condition Eq. [13] to give

i∑
j=1

2 j Bi, j (Y (x))2 j−1 = Y ′(x)
i−1∑
j=0

B ′
i−1, j (Y (x))2 j [18]

Using [17] to replace Bi, j on the left-hand side of [18] and
changing the summation index leads to

i−1∑
j=0

B ′′
i−1, j

2( j + 1)
(Y (x))2 j+1 = −Y ′(x)

i−1∑
j=0

B ′
i−1, j (Y (x))2 j . [19]

Multiplying the above equation with 2Y (x) and using the product
rule of differentiation (inversely) results in

i−1∑
j=0

1

( j + 1)

d

dx
(Y (x))2 j+2 d Bi−1, j

dx
= 0. [20]

An integration with respect to x leads to the following ordinary
differential equation (i ≥ 1):

dBi−1,0

dx
= − (1 − δi−1,0)

(Y (x))2

i−1∑
j=1

1

( j + 1)
(Y (x))2 j+2 dBi−1, j

dx

+ c

(Y (x))2
, [21]

where c is an integration constant.
All the functions Bi,0 can be determined from the solution of

Eq. [21] and the functions Bi, j with j > 0 from Eq. [17]. The
solution of Eq. [21] requires the values of Bi,0(0) and Bi,0(1).
Applying directly the boundary conditions at x = 0 and x = 1
for the series [14] leads to the new boundary conditions Bi, j (0) =
Bi, j (1) = 0 for all i and j except B0,0(0) = 1. But the system
of Eqs. [17] and [21] is not capable of satisfying the above
boundary condition. Solving [21] for B0,0 and substituting it in
[17] to find B1,1 results in B1,1(0) 
= 0. Here the singular character
of the problem is revealed, that is, the regular (outer) expansion
is not able to admit the boundary conditions. So, a different
(inner) expansion is needed in the regions of x = 0 and x = 1,
which satisfy the boundary conditions at the rods and matches
the outer expansion away from them. The inner expansion and
the matching procedure are too tedious to be referred to here.
What is important is that they lead to a very simple result for the
boundary conditions of the first two terms of the outer expansion
P0(0, r ), P0(1, r ), P1(0, r ), and P1(1, r ); i.e., the cross section
average of the above functions must be zero except P (0, r ),
0

which has a cross section average equal to 1. Unfortunately, such
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a simple relation cannot be found for the higher order terms of
the expansion.

By employing the constraints on the cross-section average, the
boundary conditions for the first two terms of the outer problem
take the form

B0,0(0) = 1 [22a]

B0,0(1) = 0 [22b]

B1,0(0) = −1

2
B1,1(0) [22c]

B1,0(1) = −1

2
B1,1(1). [22d]

Now, one can proceed to the solution of the outer problem for
the first two terms of the series [14].

Equation [21] is integrated using [22a] as initial condition and
the constant is found from the condition [22b]. The result is

B0,0(x) = 1

L

1∫
x

1

(Y (x))2
dx,

where

L =
1∫

0

1

(Y (x))2
dx . [23]

Substitution of the above in Eq. [17] with i = j = 1 yields

B1,1 = − 1

2L

Y ′(x)

(Y (x))3
[24]

Employing this, Eq. [21] for i = 2 takes the form

dB1,0

dx
= 1

4L

(
Y ′′(x)

Y (x)
− 3

(Y ′(x))2

(Y (x))2

)
+ c

(Y (x))2
. [25]

This equation must be solved for B1,0(x) and c using the follow-
ing conditions:

B1,0(0) = −1

2
B1,1(0) = Y ′(0)

4L
[26a]

B1,0(1) = −1

2
B1,1(1) = Y ′(1)

4L
. [26b]

The solution of [25] using as initial condition Eq. [26a] is

B1,0 = Y ′(0)

4L
+ 1

4L

x∫
0

(
Y ′′(x)

Y (x)
− 3

(Y ′(x))2

(Y (x))2

)
dx

+ c

x∫
1

dx . [27a]
0
(Y (x))2
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By substitution of the above in [26b], c is found to be

c = 1

4L2


Y ′(1) − Y ′(0) +

1∫
0

(
Y ′′(x)

Y (x)
− 3

(Y ′(x))2

(Y (x))2

)
dx


.

[27b]

So, the second order in ε approximation of the potential distri-
bution in the bridge has been found as

P(x, r ) = B0,0(x) + (B1,0(x) + B1,1(x)r2)ε2. [28]

The conductance is then given as

Kapp = − 2

D

1∫
0

(
∂ P

∂x

)
x=0

r dr

= − 1

D

(
B ′

0,0(0) +
(

B ′
1,0(0) + 1

2
B ′

1,1(0)

)
ε2

)
. [29]

Using the corresponding relations for Bi, j yields

Kapp = 1

DL
− ε2

4DL2


Y ′(1) − Y ′(0)

−
1∫

0

(
Y ′′(x)

Y (x)
− 3

(Y ′(x))2

(Y (x))2

)
dx


. [30]

By writing the integrand as Y 2( Y ′
Y 3 )′ and integrating by parts, the

above relation can be considerably simplified:

Kapp = 1

DL
− ε2

2DL2

1∫
0

(
Y ′(x)

Y (x)

)2

dx . [31]

Finally, returning to the initial axial coordinate X the result is

Kapp = I −1
1

(
1 − I2 I −1

1

/
2
)

[32a]

I1 =
D∫

0

(Y (X ))−2 dX [32b]

I2 =
D∫

0

(
Y ′(X )

Y (X )

)2

dX . [32c]

The correction to the zero-order solution, Kapp = I −1
1 , is propor-

tional to the mean value of the square of the normalized surface
slope along the bridge. The raise to the square has to do with

the cylindrical (axisymmetric) shape of the bridge. The compu-
tation of the definite integrals I1 and I2 can be easily embodied
ND KOSTOGLOU

to the algorithm already used to solve for the bridge shape. They
are transformed to two ODEs, which by using [3b] for the com-
putation of the derivative in [32c], take the form

dι1

dX
= 1

Y 2
[33a]

dι2

dX
= 1

(Y tan(�))2
, [33b]

with ι1(0) = ι2(0) = 0 and ι1(D) = I1 and ι2(D) = I2.
Equations [33a] and [33b] are added to the system of [3a],

[3b], and [5]. However, for computational economy they are
switched on only after the convergence criterion for the liquid
bridge shape has been fulfilled. The computational cost for the
evaluation of Kapp in this way is really insignificant and many or-
ders of magnitude smaller than using the classical discretization
methods.

EXPERIMENTAL SETUP AND PROCEDURES

The experimental set-up is similar to that of Kostoglou and
Karapantsios (2) (Fig. 3), with only some modifications in the
electronic circuitry. Liquid bridges are edge-pinned between the
tips of two equal solid rods which are aligned vertically. The up-
per rod is coupled with a precision cathetometer with a resolution
of 5 µm/division. The cathetometer is used to adjust the sepa-
ration distance between the rods prior to measurements. Rods
are constructed of bronze, an excellent electrical conductor. The
free ends of the rods are carefully machined to be knife-edged
circles. Electrical connection of the rods is achieved through
attached lead wires. The rods used in this study have radii of
1.575, 1.495, and 0.865 mm. The respective Bond numbers for
the rods are 0.36, 0.32, and 0.11.

The cathetometer with the liquid bridge is placed inside a
temperature/humidity-regulated chamber. In this work, temper-
ature is regulated to 20 ± 1◦C and relative humidity to 85 ± 2%.
As an extra means of checking on the relative humidity of
the chamber, a glass beaker containing a saturated solution of
FIG. 3. Schematic diagram of the experimental setup.
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potassium chloride is placed inside the chamber. To eliminate
forced convective air currents around the liquid bridge, the air-
circulation fan of the chamber is switched off right before the
formation of the bridge. Even under such conditions the evapo-
ration rate from the liquid bridges inside the chamber was not
constant but varied in a rather narrow range. It is seen that elec-
trical measurements can sense these small differences in the
evaporation rate with a high degree of sensitivity.

An ultraprecision microsyringe is used to deposit the fluid
that forms the liquid bridges. Uncertainty in withdrawing a re-
producible amount of liquid from the microsyringe needle is a
matter of concern, this effect being amplified on a percentage
basis with smaller quantities of liquid. For the experiments per-
formed in this study, the error in liquid volume is 1% at most
determined gravimetrically by accurately weighting the liquid
bridge to the fifth significant digit (10−5 g).

The liquid used in this work was deaerated tap water, filtered
mechanically to remove suspended particles larger than 1 µm.
The specific conductivity of the water at 20◦C in the tests was
690 µS/cm, whereas its surface tension, determined by both the
Wilhelmy slide and the ring methods, measures 65 ± 0.2 mN/m.
The possible effect of the variation of these properties with tem-
perature and bridge volume is discussed in a subsequent section.

Each experiment starts with initially setting the separation dis-
tance between the rods. Then, a liquid bridge of precisely known
volume is formed. The liquid volume is selected such that it al-
lows sufficient time before evaporation snaps the bridge. The
initial shape of the liquid bridge is not a matter of concern since
the data reduction analysis takes care of it. In all our experiments
the liquid bridge is considered to remain attached to the solid
rods at their circular edge. During the meniscus displacement—
as a result of liquid evaporation—the apparent electrical conduc-
tance of the bridge is continuously recorded. The conductance
probe comprises the two metallic rods serving as electrodes. An
ac carrier voltage of 1.5 V (peak-to-peak) is applied across the
probe at a frequency of 25 kHz in order to suppress undesirable
electrode polarization and capacitive impedance. The response
of the probe is fed to a custom-made analyzer–demodulator,
similar to that employed by Karapantsios and co-workers (3).
Particular attention was given to achieving a satisfactory sen-
sitivity over an extended liquid bridge configuration in order
to cope with the demands of the present study. For this, a spe-
cial demodulation circuitry was included in the analyzer. This
circuit acted to demodulate the peaks of the output signal syn-
chronously using the source oscillator to create square pulses of
the same frequency as the reference. A two-stage cascade phase
adjustment allowed the pulses to scroll about and intersect the
carrier signal at any point along the cycle (where the signal from
the probe was desired to be sampled), thus converting it to an
appropriate analog dc voltage signal. The user-selected ampli-
tude of each cycle of the output was stored on a capacitor and
fed to an output terminal through a buffer amplifier.
The signal from the electronic unit is monitored by a digital
voltmeter, whereas the high-frequency carrier and pulse signals
LIQUID BRIDGES 183
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FIG. 4. Normalized apparent conductance (Kapp/K init
app) curves measured

during the evaporation of different liquid bridges. Conditions of each experiment
are presented in Table 1.

are monitored by a dual-band oscilloscope. In addition, the sig-
nal is simultaneously collected and stored in a microcomputer.
Data are acquired with a variable sampling frequency in the
range 1–3 Hz, which proved to be more than adequate for these
experiments. The analog dc voltage output of the analyzer is
converted to equivalent conductance Kapp of the liquid between
the electrodes using a calibration curve based on precision resis-
tors. The output voltage is found to vary linearly with resistance
in the entire range of resistors used. At least three records were
acquired at all experimental conditions and the reproducibility
was excellent. Pearson correlation coefficients among sampled
curves were always above 0.99, whereas average instantaneous
signal deviations were around 1%, a value close to the measured
signal’s noise.

Figure 4 presents recorded electrical conductance time
records for different liquid bridge configurations. For clarity,
only selected points at prolonged time intervals are displayed.
Table 1 summarizes the conditions of the experiments in Fig. 4.

TABLE 1
Experimental Conditions of Curves Displayed in Fig. 4

Experiment Radius (mm) Distance (mm) Volume (µL)

1 1.575 3.21 13.1
2 1.575 3.21 11.2
3 1.495 3.155 9.6
4 0.865 2.995 4.5
5 0.865 3.615 6.4

6 0.865 2.235 2.7
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For presenting all runs in a single graph, the acquired apparent
conductance values are normalized with respect to values for the
initially deposited liquid bridges. Such division also eliminates
errors in liquid conductivity measurements. All traces in Fig. 4
display a monotonous decay with time as expected due to the
progressive elimination of water by evaporation. The decay at
the beginning of all runs is more gradual since then both the
water loss percentage and the change in bridge shape is small.
At later times and especially at the vicinity of bridge rupture all
curves are characterized by an abrupt drop of the signal. Due
to the varying bridge separation distance between the runs of
Fig. 4 it is not easy to directly infer the effect of liquid volume
and rod radii on the conductance signal. Such arguments will be
advanced in a subsequent section.

RESULTS AND DISCUSSION

Theoretical Results

Some theoretical results for the behavior of the liquid bridges
and their electrical conductance are presented in this section.
In all cases it is assumed that the solid–liquid contact angle is
always smaller than π − �(0) so detachment of the bridge from
the rods does not happen. The values of D that are examined in
the theoretical analysis is similar to the range used in the experi-
ments. Figure 5 shows the dimensionless rupture volume Vrup as
a function of Bond number at several dimensionless distance val-
ues. Apparently, this volume is quite insensitive to Bond number
for small values of D. For larger values of D the rupture volume
is an increasing function of Bond number. As it can be seen in
Fig. 5 the region of higher correlation between Vrup and Bo is for
large D and large Bo. So, if an experimental procedure is to be
developed for the evaluation of surface tension from measured
rupture volumes, the experimental parameters must be selected
such as D is large (D > 3).

Figure 6 displays the shape of liquid bridges with D = 1 and
Bo = 0.5 for several V values from V = 1 (equivalent cylindri-
cal shape; cylinder if under no gravity) to a volume prior to
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FIG. 5. Dimensionless rupture volume Vrup versus Bond number Bo for
several values of the dimensionless distance D of the liquid bridge.
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the rupture event. The bridge shape is nearly symmetrical which
means that the role of gravity is insignificant in this case. Figure 7
is similar to Fig. 6, but now D = 3. Here the influence of gravity
is obvious and the liquid bridge is quite asymmetrical with most
of the liquid in the lower part of the bridge. Although the Bond
number is the same for the two cases, the effect of gravity is
quite different. This happens because D is actually the hydro-
static height of the bridge so the effect of gravity depends not
only on Bo but on D as well. By comparing Figs. 6 and 7 it is
seen that the neck radius (minimum radius of the bridge) at the
rupture point is somewhat larger when the influence of gravity is
significant.

Figure 8 shows the predicted variation of the apparent elec-
trical conductance of the bridge with respect to V for several
values of D and Bo = 0. Curves for both zero-order and first-
order solutions are included (see below). As it has already been
mentioned, curves of this type can be obtained by direct use of
the developed code since the trajectory of decreasing V (start-
ing from the equivalent cylindrical shape) is followed by the
continuation sequence. For Bo = 0 the conductance of the ini-
tial cylindrical bridge is simply 1/D. Figure 8 shows that the
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volume V values.
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conductance at the rupture point is a weakly increasing func-
tion of D. Perhaps more significant is the different slope of the
curves for the different D values. The smaller the rod separation
distance the higher the conductance variability with respect to
volume change.

Figure 9 shows the predicted variation of the apparent con-
ductance with volume V for D = 2.5 and three values of Bond
number. Here it is shown more clearly than in Fig. 5 that for
large Bond numbers there is a higher interrelation between Bond
number and rupture distance. An important observation in both
Figs. 8 and 9 is that in all cases the slope of the conductance ver-
sus V curves increases sharply prior to rupture, especially for
small D values. In general, the relationship between Kapp and
V is linear for volume close to the equivalent cylindrical shape
but diverges as the rupture point is approached. This divergence
from linearity increases as D decreases.

In Figs. 8 and 9, the zero-order solution for Kapp is also shown.
This information is very important because from the difference
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FIG. 9. Apparent conductance Kapp versus dimensionless volume V for a
liquid bridge D = 2.5 and several Bo values.
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between the present approximation and the zero-order solution
the accuracy of the approximation can be inferred. In general, the
second term of the expansion of the perturbation series for Kapp

is proportional to the square of the first term, so a 10% difference
between the first and zero terms means that the second term will
be of order 1%; thus, the approximation is quite acceptable. In
this sense, the solution developed in the present work can be
safely used for D > 1.5, whereas for D > 3 (provided Bo < 0.6)
even the zero-order solution is adequate. The two solutions for
small Bo numbers and large V are in close proximity and di-
verge as V decreases. For large Bo, though, they are appreciably
dissimilar, even for the equivalent cylinder volume. This is due
to the fact that for large Bo (Bo ≥ 1), the bridge is highly dis-
torted even for the equivalent cylinder volume, whereas for the
other cases it has a perfectly cylindrical (Bo = 0) or a nearly
cylindrical (Bo = 0.5) shape.

The receding contact angle between the rod material (stainless
steel) and water is around 10◦ (24), which is smaller than the
angles shown in Figs. 6 and 7. During the experiment the liquid
bridge is edge-pinned to the rods and as its volume decreases
the actual contact angle decreases. Had the decreasing contact
angle reached the receding contact angle value, it would have
remained at this value and then the contact line would have begun
to slip on the rod. This is similar to what is shown in the work
of Peppin et al. (25, 26), where the actual contact angle initially
decreases and then remains constant as the separation distance
between the supporting solids increases. Yet, in our experiments
the regime of constant contact angle (slipping contact line) is
never reached since the rupture of the bridge happens well above
the receding contact angle value. So, the answer is that there is
no slippage at all on the rods and this is also confirmed by optical
observation.

DISCUSSION

It must be made clear that it is beyond the scope of this work
to conduct an extensive experimental study of evaporation phe-
nomena in liquid bridges. The evaporation experiments are used
simply to demonstrate the merits of the technique to some poten-
tial applications and that is why we did only some representative
runs for a few typical conditions.

The question that arises next is how the experimental con-
ductance time records acquired during the volume change of
the liquid bridge can be used in order to obtain information
about liquid bridge characteristics. In the present case, where
the bridge volume reduction is due to liquid evaporation, the
fully deployed experimental curve cannot be safely used since
the instantaneous evaporation rate is actually unknown. But the
final measured conductance value corresponding to the rupture
point does not depend on the evaporation path. It has to do only
with the distance D and the Bond number. Thus, it is tempting to
try to estimate the liquid surface tension, i.e., the Bond number,

from the measured conductance at the rupture point. In Fig. 5,
it is shown that a significant correlation between Vrup and Bo



186 KARAPANTSIOS A

exists only for large values of D(D > 3) and a particular range
of Bo which depends on D. In general, the conductance is a lin-
ear function of the bridge volume for constant D, so in principle
a gross estimation of surface tension can be made provided that
the parameters are in the appropriate range of values.

The code developed here can be used to identify this appropri-
ate range. A criterion for this can be the value of the derivative
∂K rup

app

∂Bo at constant D and Bo. This derivative shows how errors
in directly determined quantities such as K rup

app (these can be ex-
perimental, i.e., finite acquisition frequency errors in measuring
conductance and bridge weight, change of bridge temperature,
etc., or theoretical, i.e., approximate, solution of the Laplace
equation, assumption of uniform conductivity, etc.) influence
indirectly estimated quantities such as Bo. For the present ex-
periments the above derivative is smaller than 0.05, which means
that they cannot be used for surface tension estimation (a typical
error of 2% in K rup

app leads to an error larger than 40% in sur-
face tension). Nevertheless, for D > 3 and Bo > 0.8, the above
derivative is smaller than unity and a reasonable estimation of
surface tension is possible. The appropriate selection of D is
easy, but that of Bo is more elaborate because it depends on ρ

and γ of the liquid (which is to be found), and by adjusting R
the bridge volume is also affected. Nevertheless, this is a point
that deserves more attention and exploration.

Another possibility is to use conductance measurements for
the accurate estimation of the initial volume of the liquid bridge
when the parameters D and Bo are known. This can be done by
first using the code to construct the theoretical curve of the ratio
Kapp/K rup

app versus volume V for the specific D and Bo. Then,
the experimental value of K init

app/K rup
app (K init

app is the apparent con-
ductance for the initial bridge volume) is calculated and with a
single interpolation among the values of the theoretical curve,
the initial liquid volume can be obtained. The conductance ratio
is used instead of the absolute conductance in order for the pro-
cedure to be independent from conductivity measurements. The
sensitivity ratio ∂(Kapp/K rup

app)
∂V at constant D and Bo is in general

larger than unity so a reasonable estimation of the liquid bridge
volume is always possible. For instance, the difference between
directly measured bridge volumes and those estimated by the
above procedure is within ±2%.

In both the above applications, the surface tension of the liq-
uid does not correspond to the ambient temperature but to the
temperature of the evaporating interface. However, this temper-
ature can be roughly estimated from an energy balance on the
surface of the liquid bridge.

A further possibility is to use the experimental curves for
the estimation of the evaporation rate. The accurate computa-
tion of the liquid bridge evaporation rate is difficult. Griffin and
Loyalka (27) solved the relevant problem of condensation on
liquid bridges using boundary element techniques, but under
simplified conditions (isothermal, steady state, pure diffusion).
In practice the air currents around the liquid bridge (due to the

experimental conditions) make the situation more complex. The
numerical solution of the complete problem of evaporation in-
ND KOSTOGLOU

cluding convection is far from trivial (28). For these reasons the
accurate experimental determination of evaporation rates from
liquid bridges has increased significance.

The procedure for the transformation of the conductance
curves to evaporation rate curves is as follows: First, the ex-
perimental curve Kapp/K init

app versus time is measured. Then, for
the particular experimental conditions (initial volume, D, Bo)
the code is used for the construction of the theoretical curve
Kapp/K init

app versus bridge volume V . At this stage the liquid
bridge volume variation is known in a parametric form; i.e.,
t = f1(s) from the experiments and V = f2(s) from the theory,
where s = Kapp/K init

app. Using multiple interpolation the evolu-
tion curve V (t) can be constructed. In order to avoid a possi-
ble small amount of noise in the experimental measurements,
which may cause a problem in the estimation of evaporation
rates because of the differentiation of the experimental curves,
it is better to fit the curve V (t) with a higher degree polynomial.
An eighth-order polynomial fits almost perfectly the data of the
present work. This polynomial is differentiated analytically to
give the evolution of the evaporation rate.

It must be mentioned that the analysis performed in this work
is based on the assumption that the conductivity is constant dur-
ing the evaporation experiment. This, in turn, means that the
temperature of the liquid bridge and the ion concentration re-
mains constant. As regards the temperature this is not true be-
cause the high value of the evaporation enthalpy of water results
in a temperature decrease of the evaporating liquid. Heat flow
by conduction begins from the bulk of the liquid to the free
surface of the bridge and since the bridge has a finite heat ca-
pacity the result is an overall decrease of bridge temperature.
For the present experiments the driving force for evaporation is
small (due to high value of the ambient relative humidity) and a
gross quantitative analysis reveals that the decrease of the mean
temperature of the bridge in the experiments is smaller than
1.5◦C.

As regards the ion concentration, an elementary step would
be to assume that the liquid-specific conductivity is inversely
proportional to the liquid bridge volume. In principle, such a
step can be easily embodied to our model but this is the case
only if freshly distilled water (with added salts) is used instead
of tap water. However, the situation with tap water is much more
complex because of its long contact time with the ambient air. In
time, CO2 is released from the water to the environment and as a
result the pH of the solution increases. This leads to the precipi-
tation of CaCO3 (29). Therefore, the free ions contributing to the
conductivity of the solution are reduced and counterbalance the
increase of concentration due to volume reduction of the bridge.
This is also confirmed by tests where we let tap water (that used
in the experiments) in a shallow dish to evaporate while record-
ing its conductivity change with time. Even for a 50% reduction
in volume the change in conductivity is no more than 3%. From
a thermodynamic point of view the situation in the above exper-

iment is similar to that of liquid bridge evaporation. The main
difference is in the time scale, which depends on the ratio of
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FIG. 10. Evaporation rates calculated for the liquid bridges of experiments
(a) 1, 2, 3 and (b) 4, 5, 6 versus liquid bridge volume.

the evaporation area over the liquid volume. Since the rigorous
modeling of the evaporation phenomena is extremely difficult to
achieve, the present analysis based on the assumption of a con-
stant liquid conductivity is an adequate approach and anyway
within the required level of accuracy.

Using the above procedure the evolution of the evaporation
rate for the experiments shown in Fig. 4 is computed. The com-
puted evaporation rate is displayed versus the liquid bridge vol-
ume in Fig. 10a (experiments 1, 2, and 3) and Fig. 10b (exper-
iments 4, 5, and 6). Evidently, the evaporation rate increases
as the liquid bridge volume decreases. This behavior cannot be
attributed to the change of the bridge free surface area which
increases for the cases 1, 2, and 3 (but to a smaller degree than
the evaporation rate) and decreases slightly for experiments 4, 5,
and 6 as the liquid bridge volume decreases. So, the increase of
the evaporation rate may be explained only if one assumes that
the evaporation process is diffusion dominated. In this case the

Laplace equation must be solved for the air outside the bridge
and as it is known from the solution outside a single sphere,
E LIQUID BRIDGES 187

the evaporation rate is inversely proportional to the curvature
radius (for convex surfaces). The sharp increase of the evapora-
tion rate prior to rupture is due to the sharp decrease of the radius
of curvature prior to rupture. It must be noted that whereas the
transverse curvature tends to increase the evaporation rate the
axial curvature has the opposite effect (concave surface). How-
ever, for bridges with large values of D the axial curvature is
much smaller than the transverse one.

The increase of the evaporation rate is larger for the cases
with smaller values of D. This is due to the fact that for large
values of D the effect of gravity is significant and the bridge is
ruptured before its radius of curvature becomes very small (cf.
Figs. 6 and 7). The small difference between the evaporation
rates for the experiments 1 and 2 confirms the reliability of
the procedure. These two experiments differ only in the initial
volume of the liquid bridge and in principle the evaporation rates
should coincide. The small deviation (1.5–2.5%) between them
is, at least in part, due to the smaller mean bridge temperature
in experiment 1 because of the larger available time for heat
transfer in the bridge. This leads to a computation of a larger
evaporation rate than the real one.

One might argue that the surface tension is not constant during
the evaporation experiment due to the concentration increase of
impurities (surfactants) present in the tap water. The impurities
in the tap water we used in our experiments decrease the sur-
face tension from 72.75 (for ultra pure water (30)) to 65 mN/m
at 20◦C. In the worst case (linear regime of the Gibbs equa-
tion (31)) a reduction of 20% percent in the bridge volume (cf.
Figs. 8a and 8b) and the corresponding increase of the surface
concentration would lead to a surface tension of 63 mN/m. So,
assuming a constant surface tension is compatible with the lev-
els of accuracy adopted in the present work. Needless to say that
a meticulous evaporation-directed study should incorporate the
evolution of the liquid bridge temperature and surface tension
in the model.

The success of the method presented here is based on the
premise of uniform bridge conductivity. Although this assump-
tion is valid for the present experiments with tap water (since any
local concentration increase is regulated by the onset of precip-
itation), it does not hold for every case. For example, for water
with low conductivity (with no possibility for supersaturation),
the ions concentration increases as the evaporation proceeds. If
the evaporation is slow enough the ions have enough time to
diffuse in the bridge and the conductivity is uniform throughout
the bridge (but it changes with time). This case can be handled
with the tools developed in the present work by simply adding a
dependence between liquid conductivity and bridge volume. On
the other hand, if the evaporation is fast the ions are accumulated
on the evaporation front and they do not have enough time to
diffuse inward. This leads to development of conductivity pro-
files in the bridge. At this case the present procedure cannot be
used since the diffusion equation with variable diffusivity must

be solved (only a numerical solution is possible) instead of the
Laplace equation.
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CONCLUSIONS

In the present work an electrical conductance technique is ex-
plored as a means to study reducing volume liquid bridges. An in-
tegrated mathematical framework is developed which allows the
computation of liquid bridge shape as its volume is reduced. The
electrical conductance of the liquid bridge is computed through
the solution of the Laplace equation in axisymmetric geome-
try. A novel method is proposed for the transformation of the
partial differential equation in a system of two ordinary differ-
ential equations through a singular perturbation expansion. The
numerical codes compute very efficiently the curves of conduc-
tance versus volume of the liquid bridge. Several experiments
are performed in which the conductance of reducing volume
(evaporating) bridges is measured versus time. By matching the
theoretical curves with experimental time records several fea-
tures of the bridge can be estimated, e.g., initial bridge volume
and evolution of the evaporation rate.
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