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An electrical conductance technique is employed in investigating
the behavior of constant volume liquid bridges when their length is
altered. The liquid bridges are edge-pinned between two vertical,
identical rods with a variable separation distance. Rods of different
radius, material, and edge geometry are examined as they play a
role in the response of the system. It is shown that liquid bridge
volume and rod radius are the parameters that mainly influence
the conductance signal. A mathematical framework is developed for
the identification of the geometrical characteristics of liquid bridges
explicitly from conductance data. The role of gravity is discussed in
both the experiments and the theoretical analysis. The theoretical
predictions obtained show a close agreement with measurements.
© 2000 Academic Press

Key Words: liquid bridge; electrical conductivity; surface tension;
contact angle.

INTRODUCTION

Several methods have been employed in the past to re
ter liquid bridge behavior (1). A major part of this literature i
devoted to studying the force exerted by the liquid bridge to i

satisfactory accuracy and stability and is particularly sensitiv
to liquid bridge characteristics. Systems of conducting liquid
may directly benefit from measurements by this technique, e.c
water/surfactant systems in tertiary oil recovery from porou
media, adsorption hysteresis in porous adsorbents, and capill:
evaporation/condensation (5). A major advantage is the sir
plicity and robustness that makes it applicable for quickitu
measurements. Another potential application may be the me
surement of interfacial tension or contact angle of conductin
liquids avoiding the time-consuming step of image processin
the interfacial profiles (6).

Thus, the primary objective of this work is to assess a nowve
conductance technique as a potential tool for studying liqui
bridges of electrically conducting fluids. In order to do so, reli-
able computational tools that relate the physical parameters
the problem with the electrical conductance are needed. A shq
review of theoretical studies concerning liquid bridge configu
rations relevant to that of the present work follows. The solutiol

gig_the Young-Laplace equation for the determination of inter

acial shape is the subject of many works. An early account |

given in (7). Among the various bridge configurations, consid

supporting solid boundaries. However, it appears that force m&5aPle attention has been given to the shape of liquid bridg

surements suffer from inevitable stability problems that requi
excessively meticulous procedures and further filtering of ttﬁ’@

hetween two spherical particles as a prototype for the study
enomena (e.g., evaporation, condensation, and oil recove

data. Particularly when working with solid spheres, buoyand§ Porous media. Melrose (8) examined the shape of a liqui

corrections may make force data reduction very cumbersoffi
(2). Errors from these sources may be appreciable consider

the very small size of the bridges.

idge between two contacting spheres for zero Bond numbe
ﬁ,{ée et al. (5) solved the same problem for zero contact angl
and arbitrary distance between the spheres. These authors nc

Measurement of the effective electrical conductance of coft€ €xistence of two mathematical solutions and gave an er

ducting liquid bridges appears to be a tempting option for al

Bi_rical conjecture for the selection of the physically realizable

curately monitoring liquid bridge behavior. In order to do so, &table) one. For the same problem De Bisschop and Rigole
modified version of an ac conductance technique, originally d&2ve athermodynamic derivation of the Young-Laplace equatic
veloped in (3) to study flow characteristics in thin liquid films, i@nd Proposed a relevant criterion for the selection of the stab
employed here. In the present work, the alternating electric figiglution. Unfortunately, they assumed an incorrect rupture cr
is used just as a characterization means of the liquid bridge 4RO Mazzonest al. (2) derived the correct rupture criterion

clearly there is a relation with the direct electric fields which a@d further employed it to show the influence of gravity to th
used for the stabilization (with respect to Rayleigh instability) gHPture distance. Latter, Liagt al. (10) confirmed the rupture

dielectric liquid bridges (4). The technique is characterized I5j/terion of Mazzonet al. (2) showing that it is equivalent to
a more fundamental criterion based on the surface free ener

of the system. Recently, Simorms al. (11) derived approxi-
mate analytical relations for the rupture energy of a liquid bridg
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between two spheres with respect to wet agglomeration in the gagenerally known that the numerical solution of this form ha

phase. several problems due to pronounced sensitivity to the nume
As regards liquid bridges between plane surfaces, Fortes (£3) accuracy (17). For this reason a variable transformation

studied them for restricted (rods) and infinite (with contact angseiggested which results to a system of ordinary differential equ

as parameter) surfaces and for zero Bond number. The studyiofis with the arc length of the liquid bridge as the independel

these liquid bridges in a gravity field was made by Boucher andriable

Evans (13) for restricted surfaces and by Boudhe. (14) for

infinite surfaces. Latter, a stability analysis (somewhat similar d® _ | gox _ Sn®) [2a]

to that of Lianet al.(10) for the spheres problem) was given for ds Y

the restricted surfaces problem and zero gravity by Boucher and dy

Jones (15). ds — cos() [2b]
The structure of the present work is as follows: First, a theo- d X

retical analysis is presented where the computational procedures qs = sin(®), [2¢]

for the evaluation of liquid bridge shape and conductance value

are analyzed. The description of the experimental setup and pigrere S is the dimensionless arc length of the liquid profile
cedures comes next. Finally, theoretical and experimental res@ligm the point I, 0) to the point ¥, X) and @ is the angle

are compared to each other and are further discussed. between the profile and the horizontal. A further simplificatio
is possible due to the fact that the total arc length of the liqui
THEORY bridge is not a concern in the present work. By proper divisio
o between the equations the following simplified system with >
Liquid Bridge Shape as the independent variable arises
Let R be the radius of the rods aridl the distance between dd H-_BoX 1
the rods (see Fig. 1). Then, the shape of the axisymmetric R [3a]
liquid bridge Y(X) is given from the solution of the Young- dXx sin@®) Y
Laplace equationY, X, andD are made dimensionless by divi- d_Y 1 [3b]
sion with R). dX  tan@)’
d2y dy\&\ %2 1 dy\ 2\ 2 The boundary conditions a¥§0) = Y (D) = 1. The total volume
I (1 (ﬁ) ) v <1 (W) > of the liquid bridge (nondimensionalized withR?) is given as
= H — BoX, [1] D

V= / Y2(X)dX. (4]

where the Bond number is defined asBpgR?/y andp, y /

are the density and surface tension of the liquid that constitutes
the liquid bridge.H is twice the dimensionless mean curvaturgne ahove equation is written as a differential equation wit

of the bridge atX =0 and it is useful in the evaluation of théyespect tax and is added as a third equation to the system [3]
force between the rods due to the existence of the liquid bridgeysyally, the above problem is solved in a indirect manne

In the present work, where the evaluation of the above forcejig assuming a value fat and for®(0) and integrating the re-
not neededH is only a dummy parameter that must be adjustedting initial value problem for the shape of the liquid bridges

in order to satisfy the boundary conditions of Eq. [1]. e.g., (12, 14). In this way, the distanBebetween rods can be
Although in some cases the above form of the Young-Laplaggnd from the conditiory (D) = 1 and the liquid volume from

equation has been solved using a finite element method (16):4. [4] and then a table of, D, H, ®(0) can be constructed
for the evaluation of liquid bridge geometry. Another (semidi

R rect) approach is to assume a value fbror ®(0) and to find

A the other according to the requirement tabr D must have
a specific value. In this scheme also, tables such as those
YX) the previous case can be constructed. Several aspects of

method have been used in (2) (with Newton Raphson iteration
D and (10) (with bisectional searching) for liquid bridges hangin
between spherical particles. However, for extracting informe
tion from experimental data, a direct approach is necessary.
this case, the macroscopically measured paramd&teand D

are known and the liquid bridge shape must be determined in ¢
FIG.1. Geometry of the liquid bridge. der to find the parameter (typically the Bond number) value th:
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matches the theoretical results with an independent experiméans (with angled = = — ®(0)) of liquid bridges for the present
tally measured quantity (e.g., electrical conductance or forpeoblem inV and D axis. Although that graph is for a zero
between rods). This direct approach has been used in a clodgbnd number, it is known that the general behavior is the san
related problem by Spencetal.(18) who developed a methodfor finite Bond numbers (13). It is clear from the figure that for
for the determination of interfacial tension from measuremenrtsidges withY < /2 andD larger than a certain value there are
of the force required to withdraw an axisymmetric solid bodiwo possible configurations of the bridge for evafy D pair
from a two-fluid interface contained in a cylindrical vessel. Thefrom which only that of lowep is stable. The continuation se-
method for the solution of the problem is based on successiygence starts from the diagonal of the above-mentioned figu
quadratic programming with the use of Lagrange multipliers fost crosses the region of a unique solution and finally passt
handle equality constraints. to the region of two possible configurations. This trajectory i

In the present work a simple shooting method combined withstraight line parallel to th® axis. The parametric sensitivity
an appropriately designed continuation procedure is used. That was previously mentioned ensures that the Newton Rap
problem is to solve the system [3] with the respective boundaspn method converges to the stable solution when passing frc
conditions and to find the valud that gives a specified liquid one region to the other since it is impossible to roll toward th
volumeV. First, a value oH and®(0) is assumed and the ini- unstable solution which has a clearly largevalue. The con-
tial value problem is integrated with the use of an explicit Rung@uation stops when the envelope curve (dot curve in Fig. 7
Kutta integrator with self-adjusted step and prespecified acaf-(12)) is reached. At this point rupture of the liquid bridge
racy (19) to find the/ (D) and theV’ value; the prime designatesoccurs,D = Dy,,. Our code has been tested extensively to re
temporal values of the parameters. The Newton Raphson metpodduce the results that are given in Fig. 7a of (12) for zer
with numerically computed derivatives is used for the correctigravity conditions.
of the H and ®(0) values. The convergence has been achieved
whenY(D)=1 andV’'=V. So, in principle, for every pair of Conductivity Problem
D andV values the liquid bridge shape can be computed by the . . . .
above procedure. But in practice there are additional complexi—hc an electrlc.al po te.ntla.l d|fferenge gmstg bet_wegn the tw
ties. The equations, although they are not stiff, show an excesgﬁgs Fhe potential d|sFr|but|on inthe I|qu_|d bridge is given by the
parametric sensitivity with respect kb. This means that the so-5° ution of the following Laplace equation
lution of the Egs. [3] can be quite different for almost identical
values ofH. A very clear example of parametric sensitivity ofL & 8P  8°P _

N e ——r—+4+— =0 in0O<r <Y(X)andO< X < D, [5]

the Young-Laplace equation is given in Fig. 2 of (18). (The plots ar  ar X2
of Fig. 2 and Fig. 3 in the above paper are interchanged so Fig. 3
must be seen instead). whereP is the electrical potential normalized to be 1 at the on

The existence of this parametric sensitivity means that a végd and 0 at the other.
good estimation oH is needed for the Newton Raphson method The boundary conditions for the above equation are
to converge. This problem is overcome by the use of a continua-
tion approach. The method of continuation has also been used in P=1 forX=0and0O<r <1 [6a]
(18). The complete procedure is as follows: For a given pair of
valuesV andD and a given Bond number Bo, a cylindrical lig- P=0 forX=Dand0<r <1 [6b]
uid bridge is assumed with Be 0 andD’ = V. It is important P
to note that for the existence of a stable cylindrical liquid bridge (ﬁ)rﬂ(x)
shape the Rayleigh criterion must be fulfilled. Having an exact
solution (cylindrical shape witkb(0)=x/2 andH =1 for the wheref is the unit normal vector.

zero Bond number) a zero order continuation procedure Withy,,,ing the potential distribution, the dimensionless condu

respect to Bois st_ar_t_ed. This means that the Bond number is "?énceKapp can be computed from the relation

creased and the initial values for the new Newton Raphson step

are the converged values of the previous step. After the required L

Bond number Bo is reached, a new zero order continuation pro- aP

cedure with respect t®’ from D’=V to D' =D is started. Kapp = —277/ (ﬁ) rdr

The above procedures are similar to the numerical integration of *=0

an initial value problem with Bcand D’ as time-like variables,

successively. The step sizeBf must be very small in orderto  The conductance is made nondimensionlesssiRlwheres

ensure convergence of the Newton Raphson method. is the specific conductivity of the liquid. The above mathematice
The above method ensures that from the two possible sofweblem is quite similar to the extensively studied problem o

tions the stable one is always taken. This can be demonstratedt transfer in fins (20). Applying Green’s theorem to a volum

using the Fig. 7a of (12) which displays the possible configuralement (slice) of the liquid bridge betweétand X + §X

=0, [6c]

[7]
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results in to their rupture. It is worth noting that the same Eq. [13] can b
obtained in another way, as the zero order term of a singular pe
P P P ; ; ; ; ; ;
. dA-— “_dA+ [ == dA.=0, [g] turbationexpansion solution ofEq. [5]in rods with nonuniform
X X an cross section (21).
A(X+8X) A(X) As
where A(X) = 7 Y?(X) is the cross-sectional area of the liquid EXPERIMENTAL SETUP AND PROCEDURES

bridge at positiorX and A is the external surface of the volume L . .
element. The third term of the equation can be set equal to zer /A small liquid bridge is formed between the tips of two equa

due to the boundary condition [6¢]. The average poterial Solid rods, aligned vertically inside a tgmperature/humldlty
2 . regulated chamber to prevent evaporation. The upper rod
over the cross section is defined as

coupled with a precision cathetometer with a resolution c

1 5 um/division. This cathetometer has a built-in threaded rotc
Pm(X) = m / PdA (91 on which the upper rod is firmly attached. When the threade
A(X) rotor rotates, the upper rod is made to rotate, this being co
verted to a linear displacement of the upper rod. The lower rc
Application of the Leibnitz rule toX cross section gives is permanently fixed underneath the upper rod.

An ultraprecision microsyringe is used to deposit the fluic

d / PdA= / P dA+ d_Ap(AS, X). [10] thatforms the liquid bridge. Uncertainty in withdrawing a re-

d XA e A X dXx producible amount of liquid from the microsyringe needle is :

*) *) matter of concern, this effect being amplified on a percentag

A similar equation is taken foK +§X cross section. Up to basis with smaller quantities of liquid. For the experiments pe

this point no assumption has been made for the derivation of fiRgmed in this study, the error in liquid volume determination is

descriptive equations and the functiBris the one which results 1% at most.

from the solution of Eq. [5]. Here, an assumption is introduced The liquid used in this work was deaerated tap water, filtere
which considers that the functiof(X) is relatively smooth so Mmechanically to remove suspended particles larger tham1
the terms containing derivatives @(X) can be omitted in a The water in the tests was kept at'@5 Its specific conductiv-

first approximation. Using this assumption, Egs. [8], [9], andy Was 720.S/cm whereas its surface tension determined &

[10] after some algebra give both the Wilhelmy slide and the ring method measures-68
0.2 mN/m.

dPn(X 4+ §X) dPn(X) Rods were constructed by either bronze or stainless steel, b

A(X +6X) dX — AX) ax 0. [11] excellent electrical conductors. The rods used in this study ha

] o ) ] radii 1.575 and 0.865 mm. The respective Bond numbers for tl
Finally, by dividing the above equation ByX and taking o rods are 0.36 and 0.11. Perhaps the major concern in st

the limit 5 X — 0, the following differential equation fdPn(X)  experiments is the construction of the tip of the rod to which th

results liquid bridge is anchored and which is deemed responsible fi
d dp, the stability of the three-phase contact line (22). The free end
ax A(X)d—x =0. [12] the presentrods is carefully machined to be a knife-edged circ

In addition, another pair of rods is constructed slightly tapere
This is just an approximation to Eq. [5] in the limit of small(9°) at the outside toward a tip radius of 0.865 mm. Electrice
interface slope. The corresponding boundary conditions @ennection of the rotating upper rod is achieved by good conta
Pm(0)=1 andP,(D) =0 and the dimensionless conductancef its free end with a special spring, in the form of a hard metc
is given asKapp= —7(d Pmn/d X)x—o. Solution of Eq. [12] with strip. The lower rod is connected through a normal lead wire.
its boundary conditions and substitution in the relationkgg, Each experiment starts with initially forming a liquid bridge

lead to the final result with a volume corresponding to a cylindrical shape if under n
gravity conditions. This initial liquid bridge, distorted from the
D - cylindrical shape by gravity, will be henceforth referred to a:
Kapp= 1 |:/ Y~2(X)d x:| [13] equivalent cylindrical bridge. Then, the separation of the bridg
2 isincreased firstin linear steps of 250 or 10, this being fol-

lowed by gradually smaller steps down ta.Bn at the vicinity of
The integral is written in the form of a differential equatiorbridge rupture. These initial large displacement steps of the u
with respect toX and is added as a fourth equation in the systeper rod ascertain good spreading of the liquid on the rods, beil
of [3] and [4]. The accuracy of Eq. [13] depends on the magrseveral times the full revolution of the cathetometer (50).
tude of the derivativel Y/d X. This is typically small for liquid The mobility of the upper rod also serves to lead the foot of th
bridges with the exception of the highly disturbed bridges pridiquid bridge (contact line) eventually to a position of minimum
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0 —— T T T T ] passage of electric current. Analogous observations were pre
2 l;ﬂ-g;gmm, grgnzel 1 ously made with respect to ring probes employed to measure t
| o Reoa62mm B'ro:‘ezz 1 liquid holdup in packed beds and pipes (24). However, for dat
15 7 reduction purposes the experimentally determined conductan
@ I 1 signal is normalized with respect to the corresponding equi\
S alent liquid bridge conductance and these reduced quantiti
g 0r from either bronze or steel rods practically coincide.
o
5 B y RESULTS AND DISCUSSION
./://:/../‘ Theoretical Results
o A b e e b e b L e
0 0 0.5 1 15 2 25 3 Some theoretical results for the behavior of the liquid bridge
1Dy and their electrical conductance are presented in this sectic
cyl

In all cases it is assumed that the solid-liquid contact angle
FIG. 2. Response of the technique for different rod radii and constructisgmaller than®(0) so that detachment of the bridge from the
materials. rods does not happen. The values/othat are examined in the
theoretical analysis are similar to the range used in the expe
energy (23). In all our experiments the liquid bridge is assumegents. Figure 3 shows the dimensionless rupture distBage
to remain attached to the solid rods at their circular edge. Thi§ a function of Bond number at several dimensionless volun
is also manifested in the absence of hysteresis effects under ¢éftues. Apparently, this distance is quite insensitive to Bon
ferent modes of executing the experiments, i.e., decreasingn@iber for small values &f . For larger values 0¥ the rupture
increasing the separation of the bridge. distance is a decreasing function of Bond number. As it can k
During the meniscus displacement the apparent electrical cgaen in Fig. 3 the region of higher correlation betw&gg and
ductance ofthe bridges is recorded. The conductance probe c@®is for largeV and small Bo. So, if an experimental procedure
prises the two metallic rods serving as electrodes. An ac carii€tto be developed for the evaluation of surface tension fror
voltage of 1.5 V (peak-to-peak) is applied across the proberkasured rupture distances, the experimental parameters ir
a frequency of 25 kHz in order to suppress undesirable elgfe selected such that is maximized (while taking care not to
trode polarization and capacitive impedance. The responseviflate the Rayleigh stability criterion) and Bo is minimized.
the probe is fed to a special electronic analyzer, similar to thatrigure 4a displays the shape of liquid bridges witk= 0.5
employed by Karapantsios and co-workers, (3, 24, 25). The a@ad Bo= 0.5 for several distand@ values fromD = 0.5 (equiv-
log dc voltage output of the analyzer is converted to equivalesient cylindrical shape) to a distance prior to the rupture ever
conductance app 0f the medium between the electrodes usingehe vertical axis is not in the natural dimensignbut in the
calibration curve based on precision resistors. The output vakprmalized dimensiodX/D (X/D = 0 corresponds to the lower
age is found to vary linearly with resistance in the entire range gfd). For this small value 0¥ and Bo the influence of gravity
resistors used. At least five runs are performed under all expgsismall and the shape of liquid bridge is nearly symmetrice

mental conditions to check for repeatability and further increags small distance values and slightly asymmetrical for distanc
the confidence of the calculated quantities.

Figure 2 shows the proportionality relation that holds between
the as-measured voltage (and therefore electrical conductanc S L

and the inverse dimensionless length of an equivalent cylindrica I — V=05 ]
bridge for different diameters and construction materials of the 4. - — V=1 ]
rods. The larger the measured voltage the better in terms o F~ e . - V=2 ]
recording it accurately whereas the larger the slope of the lines [ A V=25 ]
the higher the achieved sensitivity. Evidently, more accurate, i I T - 1
and sensitive measurements are made with smaller tip diam ™ [ — — — — __ T =

eters. Moreover, stainless-steel rods improve substantially th
performance of the technique in both accuracy and sensitivity i 1
At first sight, this is rather surprising since bronze and stainless 1 N
steel both have sizable electrical conductivities (26) and are I ]
highly wettable (22). A possible explanation may be sought ol
in the varying chemical composition of the materials which 0 0.5 1 1.5 2
may result in different surface inhomogeneities, surface quality Bo

upon machining (roughness and flaws), and different affinity toriG. 3. Dimensionless rupture distan@,, versus Bond number Bo for
surface contamination (27) with concomitant influence on thkeveral values of the dimensionless voluvhef the liquid bridge.
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1 1 T T I ] and experimentally (2) that the above rupture criterion is nc
(a) T 1 valid. Fig. 4b is similar to Fig. 4a but the volume of the liquid
0.8 |- RN y . is nowV = 2.5. Here the influence of gravity is obvious and the
T / | liquid bridge is quite asymmetrical with most of the liquid in the
] , / / | lower part of the bridge. By comparing Figs. 4a and 4b it is see
0.6 ' / { 1 . .. . .
a — ' \ thatthe neck radius (minimum radius of the bridge) at the ruptu
X ' \ '\ point is larger when the influence of gravity is significant.
04 N \ ] Figure 4c shows the shape of liquid bridges with=2.5
i D=5 BRI N \ and D = 2.5 for several values of Bo. The cylindrical shape fol
02 (| —D=8 T N . Bo =0 deforms more and more as the Bond number increast
[| — - Db=12 R Itis noteworthy that all shapes take the valie: 1 at almost the
o D-1.48 < y p -
P B mr—— T S B sameX value (i.e., they have a common point). The departur
0 0.2 0.4 0.6 0.8 1 12 of the liquid bridge from the cylindrical shape due to gravity
Y can be also taken approximately in a closed form using a line
1 perturbation expansion with respect to Bond number (28).
‘ ' Figure 5a shows the evolution of the effective electrical cor
L (b) P - ductance of the bridge as the distarigencreases for several
08 / values oV and Bo=0.5. For ease in comparison, the results ar
I \ given in a normalized form; both conductance and distance &
06 N normalized with respect to values for the equivalent cylindrice
5 shape K¢y and D¢y, whereD =V. Curves of this type can be
0.4 -
oo [L| —D=25
Tl |- —D=29 L T
[| — —D=325 ] —— V=05
0 P ] 0.8 R — V=1 B
0 0.2 0.4 0.6 BN - —v=
Y whk N v=25 | ]
1 . ' . . \ ' . KappIKcvl | \‘\ A\
I T o ‘\’ T 7 T ] [ \' N )
L (c) r 7 1 04 h p
08 | : r e vl .
I ‘\ \ N RN
N N 02| S N
N \ : ~
06 [ AN . ] 7 (a)
TSN [ ! L
2 I X ] 0, 15 2 2,5 3
i AN ]
0.4 I \ N \\ i I:)ID(:yl
o AN
- = ) v — e
02 — — Bo=12 ; b ‘ ]
(l----- Bo=1.6 / P 0.9 [\ Bo=0 E
o — T 7T.. ... lger L i \ N\ ;
0 02 04 06 08 1 12 14 0.8} \\\ - T Boe=05
Y 0.7 [ \ \\ — — Bo=1 7
FIG.4. Liquidbridge shapefor(a)Be 0.5,V =0.5;(b)Bo=0.5V =25, K /K g _ \ N b
and several dimensionless distariBevalues; and (cV =2.5, D=2.5, and 2P : | N\
several Bond number values. 05| \\ 7
0.4 - E
values close tdDy,p. A very interesting observation is that the 03[ (0 ]
angle®(0) initially increases aP increases and after reaching ; ‘ ‘ |
e : ; CE 02 ——— e
a minimum it decreases until the rupture of the liquid bridg 25 3 35 4 45
A similar behavior of the so-called filling angle in the closel, D

287

relat(_ad problem of “_qUId bridges between spherical particles Ieq:IG. 5. Normalized conductand€app/ Ky versus (a) normalized distance
De Bisschop and Rigole (9) to state that the rupture occurs at tbmocw for Bo=0.5 and several values &f, (b) dimensionless distand2 for

minimum value of this angle. Later, it was proved theoretical

Iy = 2.5 and several values of Bo.
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obtained by direct use of the developed code since the trajectory
of increasingD starting from the equivalent cylindrical shape is

followed by the continuation sequence. Itis obvious from Fig. 5a
that as the volume of liquid decreases, the normalized conduc-
tance takes smaller values before the rupture occurs. Figure 5l

shows the evolution of the dimensionless conductance with dis- g
tanceD for V = 2.5 and three values of Bond number. Here it @

is shown more clearly that for small Bond numbers there is a
higher interrelation between Bond number and rupture distance
An important observation in both Figs. 5a and 5b is that in all
cases the slope of the conductance vefBusurves increases
sharply prior to rupture, especially for highvalues.

Experimental Results and Comparison with Predictions

When the separation of the solid rods is increased slowly a
constant liquid bridge volume, the meniscus displaces until &
certain critical bridge configuration is attained, at which stage
the bridge becomes unstable and snaps. For small dimensionle

volumes a nearly symmetric rupture is observed. In this case, th _
bridge neck remains at the mid-plane between the rods durinqﬂ.:
the whole breakage sequence. For large volumes gravity dictate 2

a nonsymmetric (but still axisymmetric) rupture as the bridge
bulges and the neck sifts gradually upward until total disruption.
Figure 6a shows the dimensionless rupture distabgg, as a
function of dimensionless liquid bridge volum€é, along with
numerical predictions (theory). The agreement between data an
predictions is excellent.

A very dramatic demonstration of gravity on liquid bridge

1.6

1.4

1.2

0.8

0.4

A R=1.575mm, Bo=0.36
A R=0.865mm, Bo=0.11 [

— theory
\ I I I I I L
0.5 1 1.5 2 2.5 3 3.5 4
v
T L T T T
piae ‘\\A
(b) .7 IS
// \\ |
K, -7 A »
/‘ \\ N
/A \\ N ]
AY A
\ AN
’ x N

A N
A \
A |
- -A--R=1.575mm, Bo=0.36
- -A--R=0.865mm, Bo=0.11
Ll P AR B AR BRI AR I ST
0.5 1 1.5 2 25 3 3.5 4

\

characteristics is diSpla}/ed in Fig. 6b. As th? quu.id volume in-fiG. 6. (a) Dimensionless rupture distand@yp, and (b) dimensionless
creases beyond a certain value, the separation distance betvgegtiation distance between points of rupture and equivalent cylindrical bridg
the points of an equivalent cylindrical bridge and rupture geBu — Deyi, versus dimensionless bridge voludefor different rod radii.

drastically smaller. This behavior may impose an upper limit of

easily reproducible data taken with the conductance technicgrep at smaller departures from the equivalent cylindrical sha

as regards practical applications.

and, therefore, at relatively higher conductance values. This

To present and compare the experimental data from varidosaccord with the theoretical arguments advanced in Fig. 5
experiments, it is advisable to normalize the apparent condUde agreement between theoretical and experimental results

tance value at every separation of the bridgy, with that
corresponding to an initial equivalent cylindrical liquid bridge,
Keyi, in order to eliminate errors in liquid conductivity measure-
ments. Figure 7 presents reduced conductance Hagg,Kcyi,
versus reduced separation distanioe taken with two rods of
different radius R=1.575 mm, Be=0.36, andR = 0.865 mm,
Bo=0.11) and various dimensionless liquid volumes. For smally

volumes, a steep decay is observed just after the departure fro\%

the equivalent cylindrical shape, being followed by a gradual=<
decrease. For large volumes the trends are inversed. Yet, in ¢
curves the vicinity of bridge rupture is characterized by an abrup
drop of the signal. It is apparent that the smaller the liquid vol-
ume the larger the overall drop in normalized conductance. De
spite the difference in radii, comparable curves are obtained fo
similar bridge volumes regarding both curve decline and subse

1-,

7 06
04

0.2

quent rupture point. This indicates the dominant effect of liquid ., 5 -

volume onthe response of the technique. The effect of gravity hgsnsionless separation distan@ taken with rods of different radius
comes more pr0m|nent asvolumeincreases causing the brldg(@tﬁ 1.575 mm, Bo=0.36,R=10.865 mm, Be=0.11).

[[ R=0.865mm | R=1.575mm

o+ > o o » | L] X
N
»
=

Normalized apparent conductance signiéilgp/Keyi, versus di-
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CONCLUSIONS

1 An electrical conductance technique is proposed as a potent
1 tool for making accuraten situ identification of liquid bridges.
| The normalized conductance signal is influenced by both liqui
1 bridge volume and rod diameter butis independent fromrod co
struction material inasmuch as it is a good electrical conductc
1 Overall, the conductance data appear to be indicative of liqu
1 bridge configuration. An integrated mathematical framework i
proposed for the explicit evaluation of liquid bridge geometri:
cal characteristics from conductance data under the influence
e gravity. Data gathered in this work as regards rupture distan
2 25 3 3.5 4 with respect to bridge volume agree favorably with theoretics
D predictions. It is apparent that by proper selection of rod ge
FIG. 8. Normalized apparent conductance signigyy Kcyi, Versus sep- ometrical characteristics, the surface tension of the conducti
aration distanceD, for rods of different tip characteristicR=0.865 mm, liquid bridge may be evaluated form the precise measurement
V =2.16). the separation distance of the bridge and the respective appal
conductance signal. Regarding potential practical applicatior
it might be useful to employ this conductance technique in ordk
Fig. 7 is rather surprising taking into account the approxima{g examine the influence of surfactant systems on the behav
character of Eq. [13]. This is mainly due to the scaling of thgf conducting liquid bridges like those encountered in tertiar

region close to rupture (where the maximum bridge distortion

occurs) is up to 10%. This deviation reduces with increasing
dimensionless volum¥, as theory predicts, due to smoother ACKNOWLEDGMENT
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