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A New Method for the Characterization of Electrically
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An electrical conductance technique is employed in investigating
the behavior of constant volume liquid bridges when their length is
altered. The liquid bridges are edge-pinned between two vertical,
identical rods with a variable separation distance. Rods of different
radius, material, and edge geometry are examined as they play a
role in the response of the system. It is shown that liquid bridge
volume and rod radius are the parameters that mainly influence
the conductance signal. A mathematical framework is developed for
the identification of the geometrical characteristics of liquid bridges
explicitly from conductance data. The role of gravity is discussed in
both the experiments and the theoretical analysis. The theoretical
predictions obtained show a close agreement with measurements.
C© 2000 Academic Press
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INTRODUCTION

Several methods have been employed in the past to r
ter liquid bridge behavior (1). A major part of this literature
devoted to studying the force exerted by the liquid bridge to
supporting solid boundaries. However, it appears that force m
surements suffer from inevitable stability problems that req
excessively meticulous procedures and further filtering of
data. Particularly when working with solid spheres, buoya
corrections may make force data reduction very cumbers
(2). Errors from these sources may be appreciable consid
the very small size of the bridges.

Measurement of the effective electrical conductance of c
ducting liquid bridges appears to be a tempting option for
curately monitoring liquid bridge behavior. In order to do so
modified version of an ac conductance technique, originally
veloped in (3) to study flow characteristics in thin liquid films
employed here. In the present work, the alternating electric
is used just as a characterization means of the liquid bridge
clearly there is a relation with the direct electric fields which
used for the stabilization (with respect to Rayleigh instability
dielectric liquid bridges (4). The technique is characterized
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satisfactory accuracy and stability and is particularly sens
to liquid bridge characteristics. Systems of conducting liqu
may directly benefit from measurements by this technique,
water/surfactant systems in tertiary oil recovery from por
media, adsorption hysteresis in porous adsorbents, and cap
evaporation/condensation (5). A major advantage is the
plicity and robustness that makes it applicable for quickin situ
measurements. Another potential application may be the m
surement of interfacial tension or contact angle of conduc
liquids avoiding the time-consuming step of image process
the interfacial profiles (6).

Thus, the primary objective of this work is to assess a no
conductance technique as a potential tool for studying liq
bridges of electrically conducting fluids. In order to do so, re
able computational tools that relate the physical paramete
the problem with the electrical conductance are needed. A s
review of theoretical studies concerning liquid bridge confi
rations relevant to that of the present work follows. The solu
of the Young-Laplace equation for the determination of in
facial shape is the subject of many works. An early accoun
given in (7). Among the various bridge configurations, cons
erable attention has been given to the shape of liquid brid
between two spherical particles as a prototype for the stud
phenomena (e.g., evaporation, condensation, and oil reco
in porous media. Melrose (8) examined the shape of a liq
bridge between two contacting spheres for zero Bond num
Erle et al. (5) solved the same problem for zero contact an
and arbitrary distance between the spheres. These authors
the existence of two mathematical solutions and gave an
pirical conjecture for the selection of the physically realiza
(stable) one. For the same problem De Bisschop and Rigol
gave a thermodynamic derivation of the Young-Laplace equa
and proposed a relevant criterion for the selection of the st
solution. Unfortunately, they assumed an incorrect rupture
terion. Mazzoneet al. (2) derived the correct rupture criterio
and further employed it to show the influence of gravity to
rupture distance. Latter, Lianet al. (10) confirmed the rupture
criterion of Mazzoneet al. (2) showing that it is equivalent t
a more fundamental criterion based on the surface free en
of the system. Recently, Simonset al. (11) derived approxi-
mate analytical relations for the rupture energy of a liquid brid
2
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are known and the liquid bridge shape must be determined in or-
ELECTRICALLY CONDU

between two spheres with respect to wet agglomeration in th
phase.

As regards liquid bridges between plane surfaces, Fortes
studied them for restricted (rods) and infinite (with contact an
as parameter) surfaces and for zero Bond number. The stu
these liquid bridges in a gravity field was made by Boucher
Evans (13) for restricted surfaces and by Boucheret al.(14) for
infinite surfaces. Latter, a stability analysis (somewhat sim
to that of Lianet al.(10) for the spheres problem) was given
the restricted surfaces problem and zero gravity by Bouche
Jones (15).

The structure of the present work is as follows: First, a th
retical analysis is presented where the computational proce
for the evaluation of liquid bridge shape and conductance v
are analyzed. The description of the experimental setup and
cedures comes next. Finally, theoretical and experimental re
are compared to each other and are further discussed.

THEORY

Liquid Bridge Shape

Let R be the radius of the rods andD the distance betwee
the rods (see Fig. 1). Then, the shape of the axisymm
liquid bridge Y(X) is given from the solution of the Young
Laplace equation (Y,X, andD are made dimensionless by div
sion with R).

− d2Y

d X2

(
1+

(
dY

d X

)2)−3/2

+ 1

Y

(
1+

(
dY

d X

)2)−1/2

= H − BoX, [1]

where the Bond number is defined as Bo= ρgR2/γ andρ, γ
are the density and surface tension of the liquid that consti
the liquid bridge.H is twice the dimensionless mean curvat
of the bridge atX= 0 and it is useful in the evaluation of th
force between the rods due to the existence of the liquid bri
In the present work, where the evaluation of the above forc
not needed,H is only a dummy parameter that must be adjus
in order to satisfy the boundary conditions of Eq. [1].

Although in some cases the above form of the Young-Lap
equation has been solved using a finite element method (1
FIG. 1. Geometry of the liquid bridge.
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is generally known that the numerical solution of this form h
several problems due to pronounced sensitivity to the num
cal accuracy (17). For this reason a variable transformatio
suggested which results to a system of ordinary differential eq
tions with the arc length of the liquid bridge as the independ
variable

d8

dS
= H − BoX − sin(8)

Y
[2a]

dY

dS
= cos(8) [2b]

d X

dS
= sin(8), [2c]

where S is the dimensionless arc length of the liquid profi
from the point (Y, 0) to the point (Y, X) and8 is the angle
between the profile and the horizontal. A further simplificati
is possible due to the fact that the total arc length of the liq
bridge is not a concern in the present work. By proper divis
between the equations the following simplified system with
as the independent variable arises

d8

d X
= H − BoX

sin(8)
− 1

Y
[3a]

dY

d X
= 1

tan(8)
. [3b]

The boundary conditions areY(0)=Y(D)= 1. The total volume
of the liquid bridge (nondimensionalized withπR3) is given as

V =
D∫

0

Y2(X) d X. [4]

The above equation is written as a differential equation w
respect toX and is added as a third equation to the system [

Usually, the above problem is solved in a indirect mann
i.e., assuming a value forH and for8(0) and integrating the re
sulting initial value problem for the shape of the liquid bridge
e.g., (12, 14). In this way, the distanceD between rods can b
found from the conditionY(D)= 1 and the liquid volume from
Eq. [4] and then a table ofV , D, H , 8(0) can be constructed
for the evaluation of liquid bridge geometry. Another (semi
rect) approach is to assume a value forH or 8(0) and to find
the other according to the requirement thatV or D must have
a specific value. In this scheme also, tables such as thos
the previous case can be constructed. Several aspects o
method have been used in (2) (with Newton Raphson iteratio
and (10) (with bisectional searching) for liquid bridges hang
between spherical particles. However, for extracting inform
tion from experimental data, a direct approach is necessar
this case, the macroscopically measured parametersV and D
der to find the parameter (typically the Bond number) value that
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matches the theoretical results with an independent experim
tally measured quantity (e.g., electrical conductance or fo
between rods). This direct approach has been used in a cl
related problem by Spenceret al.(18) who developed a metho
for the determination of interfacial tension from measureme
of the force required to withdraw an axisymmetric solid bo
from a two-fluid interface contained in a cylindrical vessel. Th
method for the solution of the problem is based on succes
quadratic programming with the use of Lagrange multiplier
handle equality constraints.

In the present work a simple shooting method combined w
an appropriately designed continuation procedure is used.
problem is to solve the system [3] with the respective bound
conditions and to find the valueH that gives a specified liquid
volumeV . First, a value ofH and8(0) is assumed and the in
tial value problem is integrated with the use of an explicit Run
Kutta integrator with self-adjusted step and prespecified a
racy (19) to find theY(D) and theV ′ value; the prime designate
temporal values of the parameters. The Newton Raphson me
with numerically computed derivatives is used for the correc
of the H and8(0) values. The convergence has been achie
whenY(D)= 1 andV ′ =V . So, in principle, for every pair o
D andV values the liquid bridge shape can be computed by
above procedure. But in practice there are additional comp
ties. The equations, although they are not stiff, show an exce
parametric sensitivity with respect toH . This means that the so
lution of the Eqs. [3] can be quite different for almost identi
values ofH . A very clear example of parametric sensitivity
the Young-Laplace equation is given in Fig. 2 of (18). (The pl
of Fig. 2 and Fig. 3 in the above paper are interchanged so F
must be seen instead).

The existence of this parametric sensitivity means that a
good estimation ofH is needed for the Newton Raphson meth
to converge. This problem is overcome by the use of a conti
tion approach. The method of continuation has also been us
(18). The complete procedure is as follows: For a given pa
valuesV andD and a given Bond number Bo, a cylindrical li
uid bridge is assumed with Bo′ = 0 andD′ =V . It is important
to note that for the existence of a stable cylindrical liquid brid
shape the Rayleigh criterion must be fulfilled. Having an ex
solution (cylindrical shape with8(0)=π/2 andH = 1 for the
zero Bond number) a zero order continuation procedure
respect to Bo′ is started. This means that the Bond number is
creased and the initial values for the new Newton Raphson
are the converged values of the previous step. After the requ
Bond number Bo is reached, a new zero order continuation
cedure with respect toD′ from D′ =V to D′ = D is started.
The above procedures are similar to the numerical integratio
an initial value problem with Bo′ andD′ as time-like variables
successively. The step size ofD′ must be very small in order t
ensure convergence of the Newton Raphson method.

The above method ensures that from the two possible s
tions the stable one is always taken. This can be demonst

using the Fig. 7a of (12) which displays the possible configu
KARAPANTSIOS
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tions (with angleθ =π −8(0)) of liquid bridges for the presen
problem inV and D axis. Although that graph is for a zer
Bond number, it is known that the general behavior is the sa
for finite Bond numbers (13). It is clear from the figure that f
bridges withθ <π/2 andD larger than a certain value there a
two possible configurations of the bridge for everyV , D pair
from which only that of lowerθ is stable. The continuation se
quence starts from the diagonal of the above-mentioned fig
first crosses the region of a unique solution and finally pas
to the region of two possible configurations. This trajectory
a straight line parallel to theD axis. The parametric sensitivity
that was previously mentioned ensures that the Newton Ra
son method converges to the stable solution when passing
one region to the other since it is impossible to roll toward
unstable solution which has a clearly largerθ value. The con-
tinuation stops when the envelope curve (dot curve in Fig.
of (12)) is reached. At this point rupture of the liquid bridg
occurs,D= Drup. Our code has been tested extensively to
produce the results that are given in Fig. 7a of (12) for z
gravity conditions.

Conductivity Problem

If an electrical potential difference exists between the t
rods the potential distribution in the liquid bridge is given by t
solution of the following Laplace equation

1

r

∂

∂r
r
∂P

∂r
+ ∂

2P

∂X2
= 0 in 0< r <Y(X) and 0< X < D, [5]

whereP is the electrical potential normalized to be 1 at the o
rod and 0 at the other.

The boundary conditions for the above equation are

P = 1 for X = 0 and 0< r < 1 [6a]

P = 0 for X = D and 0< r < 1 [6b](
∂P

∂En
)

r=Y(X)

= 0, [6c]

whereEn is the unit normal vector.
Having the potential distribution, the dimensionless cond

tanceKapp can be computed from the relation

Kapp= −2π

1∫
0

(
∂P

∂X

)
X=0

r dr. [7]

The conductance is made nondimensionless withσRwhereσ
is the specific conductivity of the liquid. The above mathemati
problem is quite similar to the extensively studied problem
heat transfer in fins (20). Applying Green’s theorem to a volu
ra-element (slice) of the liquid bridge betweenX and X + δX
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results in∫
A(X+δX)

∂P

∂X
d A−

∫
A(X)

∂P

∂X
d A+

∫
As

∂P

∂En d As = 0, [8]

whereA(X)=πY2(X) is the cross-sectional area of the liqu
bridge at positionX andAs is the external surface of the volum
element. The third term of the equation can be set equal to
due to the boundary condition [6c]. The average potentialPm

over the cross section is defined as

Pm(X) = 1

A(X)

∫
A(X)

P d A. [9]

Application of the Leibnitz rule toX cross section gives

d

d X

∫
A(X)

P d A=
∫

A(X)

∂P

∂X
d A+ d A

d X
P(As, X). [10]

A similar equation is taken forX+ δX cross section. Up to
this point no assumption has been made for the derivation o
descriptive equations and the functionP is the one which result
from the solution of Eq. [5]. Here, an assumption is introduc
which considers that the functionA(X) is relatively smooth so
the terms containing derivatives ofA(X) can be omitted in a
first approximation. Using this assumption, Eqs. [8], [9], a
[10] after some algebra give

A(X + δX)
d Pm(X + δX)

d X
− A(X)

d Pm(X)

d X
= 0. [11]

Finally, by dividing the above equation byδX and taking
the limit δX→ 0, the following differential equation forPm(X)
results

d

d X
A(X)

d Pm

d X
= 0. [12]

This is just an approximation to Eq. [5] in the limit of sma
interface slope. The corresponding boundary conditions
Pm(0)= 1 and Pm(D)= 0 and the dimensionless conductan
is given asKapp=−π (d Pm/d X)X=0. Solution of Eq. [12] with
its boundary conditions and substitution in the relation forKapp

lead to the final result

Kapp= π
 D∫

0

Y−2(X) d X

−1

. [13]

The integral is written in the form of a differential equatio
with respect toX and is added as a fourth equation in the sys
of [3] and [4]. The accuracy of Eq. [13] depends on the mag

tude of the derivativedY/d X. This is typically small for liquid
bridges with the exception of the highly disturbed bridges pr
CTING LIQUID BRIDGES 285
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to their rupture. It is worth noting that the same Eq. [13] can
obtained in another way, as the zero order term of a singular
turbation expansion solution of Eq. [5] in rods with nonunifor
cross section (21).

EXPERIMENTAL SETUP AND PROCEDURES

A small liquid bridge is formed between the tips of two equ
solid rods, aligned vertically inside a temperature/humidi
regulated chamber to prevent evaporation. The upper ro
coupled with a precision cathetometer with a resolution
5 µm/division. This cathetometer has a built-in threaded ro
on which the upper rod is firmly attached. When the threa
rotor rotates, the upper rod is made to rotate, this being c
verted to a linear displacement of the upper rod. The lower
is permanently fixed underneath the upper rod.

An ultraprecision microsyringe is used to deposit the flu
that forms the liquid bridge. Uncertainty in withdrawing a r
producible amount of liquid from the microsyringe needle i
matter of concern, this effect being amplified on a percent
basis with smaller quantities of liquid. For the experiments p
formed in this study, the error in liquid volume determination
1% at most.

The liquid used in this work was deaerated tap water, filte
mechanically to remove suspended particles larger than 1µm.
The water in the tests was kept at 25◦C. Its specific conductiv-
ity was 720µS/cm whereas its surface tension determined
both the Wilhelmy slide and the ring method measures 6±
0.2 mN/m.

Rods were constructed by either bronze or stainless steel,
excellent electrical conductors. The rods used in this study h
radii 1.575 and 0.865 mm. The respective Bond numbers for
two rods are 0.36 and 0.11. Perhaps the major concern in
experiments is the construction of the tip of the rod to which
liquid bridge is anchored and which is deemed responsible
the stability of the three-phase contact line (22). The free en
the present rods is carefully machined to be a knife-edged ci
In addition, another pair of rods is constructed slightly tape
(9◦) at the outside toward a tip radius of 0.865 mm. Electri
connection of the rotating upper rod is achieved by good con
of its free end with a special spring, in the form of a hard me
strip. The lower rod is connected through a normal lead wir

Each experiment starts with initially forming a liquid bridg
with a volume corresponding to a cylindrical shape if under
gravity conditions. This initial liquid bridge, distorted from th
cylindrical shape by gravity, will be henceforth referred to
equivalent cylindrical bridge. Then, the separation of the brid
is increased first in linear steps of 250 or 100µm, this being fol-
lowed by gradually smaller steps down to 5µm at the vicinity of
bridge rupture. These initial large displacement steps of the
per rod ascertain good spreading of the liquid on the rods, b
several times the full revolution of the cathetometer (50µm).
ior
The mobility of the upper rod also serves to lead the foot of the
liquid bridge (contact line) eventually to a position of minimum
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FIG. 2. Response of the technique for different rod radii and construct
materials.

energy (23). In all our experiments the liquid bridge is assum
to remain attached to the solid rods at their circular edge. T
is also manifested in the absence of hysteresis effects unde
ferent modes of executing the experiments, i.e., decreasin
increasing the separation of the bridge.

During the meniscus displacement the apparent electrical
ductance of the bridges is recorded. The conductance probe
prises the two metallic rods serving as electrodes. An ac ca
voltage of 1.5 V (peak-to-peak) is applied across the prob
a frequency of 25 kHz in order to suppress undesirable e
trode polarization and capacitive impedance. The respons
the probe is fed to a special electronic analyzer, similar to t
employed by Karapantsios and co-workers, (3, 24, 25). The a
log dc voltage output of the analyzer is converted to equiva
conductanceKappof the medium between the electrodes usin
calibration curve based on precision resistors. The output v
age is found to vary linearly with resistance in the entire range
resistors used. At least five runs are performed under all exp
mental conditions to check for repeatability and further incre
the confidence of the calculated quantities.

Figure 2 shows the proportionality relation that holds betwe
the as-measured voltage (and therefore electrical conducta
and the inverse dimensionless length of an equivalent cylindr
bridge for different diameters and construction materials of
rods. The larger the measured voltage the better in term
recording it accurately whereas the larger the slope of the l
the higher the achieved sensitivity. Evidently, more accur
and sensitive measurements are made with smaller tip d
eters. Moreover, stainless-steel rods improve substantially
performance of the technique in both accuracy and sensitiv
At first sight, this is rather surprising since bronze and stainl
steel both have sizable electrical conductivities (26) and
highly wettable (22). A possible explanation may be sou
in the varying chemical composition of the materials whi
may result in different surface inhomogeneities, surface qua

upon machining (roughness and flaws), and different affinity
surface contamination (27) with concomitant influence on t
KARAPANTSIOS
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passage of electric current. Analogous observations were pr
ously made with respect to ring probes employed to measure
liquid holdup in packed beds and pipes (24). However, for d
reduction purposes the experimentally determined conducta
signal is normalized with respect to the corresponding equ
alent liquid bridge conductance and these reduced quant
from either bronze or steel rods practically coincide.

RESULTS AND DISCUSSION

Theoretical Results

Some theoretical results for the behavior of the liquid bridg
and their electrical conductance are presented in this sec
In all cases it is assumed that the solid-liquid contact angle
smaller than8(0) so that detachment of the bridge from th
rods does not happen. The values ofV that are examined in the
theoretical analysis are similar to the range used in the exp
ments. Figure 3 shows the dimensionless rupture distanceDrup

as a function of Bond number at several dimensionless volu
values. Apparently, this distance is quite insensitive to Bo
number for small values ofV . For larger values ofV the rupture
distance is a decreasing function of Bond number. As it can
seen in Fig. 3 the region of higher correlation betweenDrup and
Bo is for largeV and small Bo. So, if an experimental procedu
is to be developed for the evaluation of surface tension fr
measured rupture distances, the experimental parameters
be selected such thatV is maximized (while taking care not to
violate the Rayleigh stability criterion) and Bo is minimized.

Figure 4a displays the shape of liquid bridges withV = 0.5
and Bo= 0.5 for several distanceD values fromD= 0.5 (equiv-
alent cylindrical shape) to a distance prior to the rupture eve
The vertical axis is not in the natural dimensionX but in the
normalized dimensionX/D (X/D= 0 corresponds to the lowe
rod). For this small value ofV and Bo the influence of gravity
is small and the shape of liquid bridge is nearly symmetri
for small distance values and slightly asymmetrical for distan
to
he

FIG. 3. Dimensionless rupture distanceDrup versus Bond number Bo for
several values of the dimensionless volumeV of the liquid bridge.
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FIG. 4. Liquid bridge shape for (a) Bo= 0.5,V = 0.5; (b) Bo= 0.5,V = 2.5,
and several dimensionless distanceD values; and (c)V = 2.5, D= 2.5, and
several Bond number values.

values close toDrup. A very interesting observation is that th
angle8(0) initially increases asD increases and after reachin
a minimum it decreases until the rupture of the liquid bridg
A similar behavior of the so-called filling angle in the close
related problem of liquid bridges between spherical particles

De Bisschop and Rigole (9) to state that the rupture occurs a
minimum value of this angle. Later, it was proved theoretica
TING LIQUID BRIDGES 287
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and experimentally (2) that the above rupture criterion is
valid. Fig. 4b is similar to Fig. 4a but the volume of the liqu
is nowV = 2.5. Here the influence of gravity is obvious and t
liquid bridge is quite asymmetrical with most of the liquid in th
lower part of the bridge. By comparing Figs. 4a and 4b it is s
that the neck radius (minimum radius of the bridge) at the rup
point is larger when the influence of gravity is significant.

Figure 4c shows the shape of liquid bridges withV = 2.5
andD= 2.5 for several values of Bo. The cylindrical shape
Bo= 0 deforms more and more as the Bond number increa
It is noteworthy that all shapes take the valueY= 1 at almost the
sameX value (i.e., they have a common point). The depart
of the liquid bridge from the cylindrical shape due to grav
can be also taken approximately in a closed form using a lin
perturbation expansion with respect to Bond number (28).

Figure 5a shows the evolution of the effective electrical c
ductance of the bridge as the distanceD increases for severa
values ofV and Bo= 0.5. For ease in comparison, the results
given in a normalized form; both conductance and distance
normalized with respect to values for the equivalent cylindri
shape,Kcyl and Dcyl, whereD=V. Curves of this type can be

FIG. 5. Normalized conductanceKapp/Kcyl versus (a) normalized distanc

t the
lly
D/Dcyl for Bo= 0.5 and several values ofV , (b) dimensionless distanceD for
V = 2.5 and several values of Bo.
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obtained by direct use of the developed code since the traje
of increasingD starting from the equivalent cylindrical shape
followed by the continuation sequence. It is obvious from Fig
that as the volume of liquid decreases, the normalized con
tance takes smaller values before the rupture occurs. Figu
shows the evolution of the dimensionless conductance with
tanceD for V = 2.5 and three values of Bond number. Her
is shown more clearly that for small Bond numbers there
higher interrelation between Bond number and rupture dista
An important observation in both Figs. 5a and 5b is that in
cases the slope of the conductance versusD curves increase
sharply prior to rupture, especially for highV values.

Experimental Results and Comparison with Predictions

When the separation of the solid rods is increased slow
constant liquid bridge volume, the meniscus displaces un
certain critical bridge configuration is attained, at which st
the bridge becomes unstable and snaps. For small dimensio
volumes a nearly symmetric rupture is observed. In this case
bridge neck remains at the mid-plane between the rods du
the whole breakage sequence. For large volumes gravity dic
a nonsymmetric (but still axisymmetric) rupture as the bri
bulges and the neck sifts gradually upward until total disrupt
Figure 6a shows the dimensionless rupture distance,Drup, as a
function of dimensionless liquid bridge volume,V , along with
numerical predictions (theory). The agreement between dat
predictions is excellent.

A very dramatic demonstration of gravity on liquid brid
characteristics is displayed in Fig. 6b. As the liquid volume
creases beyond a certain value, the separation distance be
the points of an equivalent cylindrical bridge and rupture g
drastically smaller. This behavior may impose an upper lim
easily reproducible data taken with the conductance techn
as regards practical applications.

To present and compare the experimental data from va
experiments, it is advisable to normalize the apparent con
tance value at every separation of the bridge,Kapp, with that
corresponding to an initial equivalent cylindrical liquid bridg
Kcyl, in order to eliminate errors in liquid conductivity measu
ments. Figure 7 presents reduced conductance data,Kapp/Kcyl,
versus reduced separation distance,D, taken with two rods o
different radius (R= 1.575 mm, Bo= 0.36, andR= 0.865 mm,
Bo= 0.11) and various dimensionless liquid volumes. For sm
volumes, a steep decay is observed just after the departure
the equivalent cylindrical shape, being followed by a grad
decrease. For large volumes the trends are inversed. Yet,
curves the vicinity of bridge rupture is characterized by an ab
drop of the signal. It is apparent that the smaller the liquid
ume the larger the overall drop in normalized conductance.
spite the difference in radii, comparable curves are obtaine
similar bridge volumes regarding both curve decline and su
quent rupture point. This indicates the dominant effect of liq

volume on the response of the technique. The effect of gravity
comes more prominent as volume increases causing the brid
KARAPANTSIOS
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FIG. 6. (a) Dimensionless rupture distance,Drup, and (b) dimensionless
separation distance between points of rupture and equivalent cylindrical br
Drup− Dcyl, versus dimensionless bridge volumeV , for different rod radii.

snap at smaller departures from the equivalent cylindrical sh
and, therefore, at relatively higher conductance values. Th
in accord with the theoretical arguments advanced in Fig.
The agreement between theoretical and experimental resu

FIG. 7. Normalized apparent conductance signalsKapp/Kcyl, versus di-
ge to
mensionless separation distanceD, taken with rods of different radius
(R= 1.575 mm, Bo= 0.36,R= 0.865 mm, Bo= 0.11).



-

t

t

i

p
n

q
a
c
i
c
s

e

l
c
d

i

ntial

uid
on-
tor.
uid
is

ri-
e of
nce
cal
ge-
ting
nt of
arent
ns,

der
vior
ry

ment
g

ids
er-

.,
ELECTRICALLY CONDU

FIG. 8. Normalized apparent conductance signals,Kapp/Kcyl, versus sep
aration distanceD, for rods of different tip characteristics (R= 0.865 mm,
V = 2.16).

Fig. 7 is rather surprising taking into account the approxim
character of Eq. [13]. This is mainly due to the scaling of
plot. In fact, the deviation between theory and experiment in
region close to rupture (where the maximum bridge distor
occurs) is up to 10%. This deviation reduces with increas
dimensionless volumeV , as theory predicts, due to smooth
bridge surfaces (Fig. 4b).

ExperimentalKapp/Kcyl versusD curves can be readily use
to infer the value of liquid surface tension. Fitting the exp
imental curves with theoretical predictions for an appropr
Bond number can do this, if justV and R are known. For liq-
uid bridges forming not between restricted rods but betw
infinite surfaces it is also possible to employ the same
cedure to deduce the value of the contact angle betwee
liquid and the solid surface by using the corresponding
uid bridge descriptive equations (14). Work in that direction
under way.

The employed experimental parameters (rods radii and li
medium) assure that no recession of the bridge contact line
from the edge of the rods is expected due to hydrodynami
stabilities (13). However, in a real system the interfacial stab
limit may also be transgressed by violations of contact angle
ditions such as minor construction imperfections, sharpne
the edge, or other geometrical peculiarities at a submicrosc
level (29). Tests performed with rods slightly tapered near th
(9◦; R= 0.865 mm) showed that, with bridges of relatively lar
volume, even moderate external vibrations of the setup cou
responsible for slight movement of the contact line at the vi
ity of bridge rupture since in this case gravity makes the bri
bulge excessively. Interestingly, the radial direction of overfl
over the edge was random from run to run, suggesting
there were no preferential sites of instability around the ed
Figure 8 clearly demonstrates the influence of gravity wh
at large separations of the rods, bulges the bridge to angle

yond Gibbs stability condition (29) and spills the liquid over t
edge.
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CONCLUSIONS

An electrical conductance technique is proposed as a pote
tool for making accuratein situ identification of liquid bridges.
The normalized conductance signal is influenced by both liq
bridge volume and rod diameter but is independent from rod c
struction material inasmuch as it is a good electrical conduc
Overall, the conductance data appear to be indicative of liq
bridge configuration. An integrated mathematical framework
proposed for the explicit evaluation of liquid bridge geomet
cal characteristics from conductance data under the influenc
gravity. Data gathered in this work as regards rupture dista
with respect to bridge volume agree favorably with theoreti
predictions. It is apparent that by proper selection of rod
ometrical characteristics, the surface tension of the conduc
liquid bridge may be evaluated form the precise measureme
the separation distance of the bridge and the respective app
conductance signal. Regarding potential practical applicatio
it might be useful to employ this conductance technique in or
to examine the influence of surfactant systems on the beha
of conducting liquid bridges like those encountered in tertia
oil recovery or capillary evaporation/condensation.
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